中国海洋大学水产学院;
为了解气候变化情景下北极和亚北极海域鲱类和鳕类适宜栖息地的时空变化,并比较不同海域间鲱类和鳕类适宜栖息地变化的差异,本研究通过构建物种分布模型对北极和亚北极海域的北鳕(Boreogadus saida)、北极鳕(Arctogadus glacialis)、大西洋鳕(Gadus morhua)、大西洋鲱(Clupea harengus)、狭鳕(Gadus chalcogrammus)和太平洋鲱(Clupea pallasii)这6个典型鱼种在当前和未来两种不同的气候变化情景下的适宜栖息地进行了预测。研究显示:集成模型真实技巧统计值(True skill statistics, TSS)和受试者操作特征(Receiver operating characteristic, ROC)的曲线下面积(Area under the curve, AUC)值均高于0.80,有较好的预测性能。影响各鱼种分布的主要环境变量是不同的,海洋表面温度是影响几乎所有研究鱼种分布的重要环境变量。未来,所研究鱼种的适宜栖息地都会向高纬度移动,其中大西洋鳕适宜栖息地的范围变化最大。相比于SSP2-4.5情景,SSP5-8.5情景的北极海域北鳕和北极鳕的适宜栖息地会有所收缩;在未来两种环境变化情境下目前主要分布在北极大西洋一侧的大西洋鳕和大西洋鲱将会进一步进入巴伦支海海域,而目前主要分布在北极太平洋一侧的狭鳕和太平洋鲱并不会大规模地穿过白令海峡到达楚科奇海。本研究预测了北极和亚北极的东西两侧海域(大西洋和太平洋)鲱类和鳕类在气候变化情景下的潜在栖息地,研究结果可为认知北极和亚北极海域鲱类和鳕类对于气候变化的响应提供参考。
180 | 0 | 87 |
下载次数 | 被引频次 | 阅读次数 |
[1] Lima A R A,Baltazar-Soares M,Garrido S,et al.Forecasting shifts in habitat suitability across the distribution range of a temperate small pelagic fish under different scenarios of climate change[J].Science of The Total Environment,2022,804:150167.
[2] Mediodia H J,Kahui V,Noy I.Sea surface temperature and tuna catch in the Eastern Pacific Ocean under climate change[J].Marine Resource Economics,2023,38(4):329-351.
[3] Pan R,Shu Q,Wang Q,et al.Future Arctic climate change in CMIP6 strikingly intensified by NEMO-family climate models[J].Geophysical Research Letters,2023,50(4):e2022GL102077.
[4] Serreze M C,Francis J A.The Arctic amplification debate[J].Climatic Change,2006,76(3-4):241-264.
[5] Screen J A,Simmonds I.The central role of diminishing sea ice in recent Arctic temperature amplification[J].Nature,2010,464(7293):1334-1337.
[6] Hunt G L,Blanchard A L,Boveng P,et al.The Barents and Chukchi Seas:Comparison of two Arctic shelf ecosystems[J].Journal of Marine Systems,2013,109-110:43-68.
[7] Perry A L,Low P J,Ellis J R,et al.Climate change and distribution shifts in marine fishes[J].Science,2005,308(5730):1912-1915.
[8] Doney S C,Ruckelshaus M,Emmett Duffy J,et al.Climate change impacts on marine ecosystems[J].Annual Review of Marine Science,2012,4(1):11-37.
[9] Cheung W W L,Lam V W Y,Sarmiento J L,et al.Projecting global marine biodiversity impacts under climate change scenarios[J].Fish and Fisheries,2009,10(3):235-251.
[10] Fossheim M,Primicerio R,Johannesen E,et al.Recent warming leads to a rapid borealization of fish communities in the Arctic[J].Nature Climate Change,2015,5(7):673.
[11] Renaud P E,Berge J,Varpe ?,et al.Is the poleward expansion by Atlantic cod and haddock threatening native polar cod,Boreogadus saida?[J].Polar Biology,2012,35(3):401-412.
[12] Levine R M,De Robertis A,Grünbaum D,et al.Climate-driven shifts in pelagic fish distributions in a rapidly changing Pacific Arctic[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2023,208:105244.
[13] Murphy S J,Smith A B.What can community ecologists learn from species distribution models?[J].Ecosphere,2021,12(12):e03864.
[14] Peterson A T,Soberon J.Species distribution modeling and ecological niche modeling:Getting the concepts right[J].Natureza & Conservacao,2012,10(2):102-107.
[15] Elith J,Leathwick J R.Species distribution models:Ecological explanation and prediction across space and time[J].Annual Review of Ecology,Evolution,and Systematics,2009,40(1):677-697.
[16] Booth T H,Nix H A,Busby J R,et al.BIOCLIM:The first species distribution modelling package,its early applications and relevance to most current MAXENT studies[J].Diversity and Distributions,2014,20(1):1-9.
[17] 李国庆,刘长成,刘玉国,等.物种分布模型理论研究进展[J].生态学报,2013,33(16):4827-4835.Li G Q,Liu C C,Liu Y G,et al.Research progress of species distribution model theory[J].Acta Ecologica Sinica,2013,33(16):4827-4835.
[18] Gao Z,Ma S,Li J,et al.Climate-induced long-term variations of the Arctic ecosystems[J].Progress in Oceanography,2023,213:103006.
[19] O’Neill B C,Tebaldi C,Van Vuuren D P,et al.The scenario model intercomparison project (scenarioMIP) for CMIP6[J].Geoscientific Model Development,2016,9(9):3461-3482.
[20] 周天军,邹立维,陈晓龙.第六次国际耦合模式比较计划(CMIP6)评述[J].气候变化研究进展,2019,15(5):445-456.Zhou T J,Zou L W,Chen X L.Review of the sixth international programme for the intercomparison of coupled models (CMIP6)[J].Climate Change Research,2019,15(5):445-456.
[21] Fournier A,Barbet-Massin M,Rome Q,et al.Predicting species distribution combining multi-scale drivers[J].Global Ecology and Conservation,2017,12:215-226.
[22] Barbet-Massin M,Jiguet F,Albert C H,et al.Selecting pseudo-absences for species distribution models:How,where and how many?[J].Methods in Ecology and Evolution,2012,3(2):327-338.
[23] Duan R Y,Kong X Q,Huang M Y,et al.The predictive performance and stability of six species distribution models[J].PLoS One,2014,9(11):e112764.
[24] 仉天宇,邵全琴,周成虎.卫星测高数据在渔情分析中的应用探索[J].水产科学,2001(6):4-8.Zhang T Y,Shao Q Q,Zhou C H.Application of satellite altimetry data in fishery analysis[J].Fisheries Science,2001(6):4-8.
[25] Cheung W W L,Watson R,Pauly D.Signature of ocean warming in global fisheries catch[J].Nature,2013,497(7449):365-368.
[26] Richardson A J,Brown C J,Brander K,et al.Climate change and marine life[J].Biology Letters,2012,8(6):907-909.
[27] Melnikov I A,Chernova N V.Characteristics of under-ice swarming of polar cod Boreogadus saida (Gadidae) in the Central Arctic Ocean[J].Journal of Ichthyology,2013,53(1):7-15.
[28] Geoffroy M,Bouchard C,Flores H,et al.The circumpolar impacts of climate change and anthropogenic stressors on Arctic cod (Boreogadus saida) and its ecosystem[J].Elementa-Science of the Anthropocene,2023,11(1):97.
[29] Marsh J M,Mueter F J.Influences of temperature,predators,and competitors on polar cod (Boreogadus saida) at the southern margin of their distribution[J].Polar Biology,2020,43(8):995-1014.
[30] Leo E,Kunz K L,Schmidt M,et al.Mitochondrial acclimation potential to ocean acidification and warming of Polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua)[J].Frontiers in Zoology,2017,14(1):21.
[31] Pettitt-Wade H,Loseto L L,Majewski A,et al.Cod movement ecology in a warming world:Circumpolar arctic gadids[J].Fish and Fisheries,2021,22(3):562-591.
[32] Vestfals C D,Mueter F J,Duffy-Anderson J T,et al.Spatio-temporal distribution of polar cod (Boreogadus saida) and saffron cod (Eleginus gracilis) early life stages in the Pacific Arctic[J].Polar Biology,2019,42(5):969-990.
[33] Hop H,Gj?s?ter H.Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea[J].Marine Biology Research,2013,9(9):878-894.
[34] Engelhard G H,Righton D A,Pinnegar J K.Climate change and fishing:A century of shifting distribution in North Sea cod[J].Global Change Biology,2014,20(8):2473-2483.
[35] Butzin M,P?rtner H.Thermal growth potential of Atlantic cod by the end of the 21st century[J].Global Change Biology,2016,22(12):4162-4168.
[36] Cote D,Konecny C A,Seiden J,et al.Forecasted shifts in thermal habitat for cod species in the Northwest Atlantic and eastern Canadian Arctic[J].Frontiers in Marine Science,2021,8:764072.
[37] Mecklenburg C W,Byrkjedal I,Karamushko O V,et al.Atlantic fishes in the Chukchi borderland[J].Marine Biodiversity,2014,44(1):127-150.
[38] Stevenson D E,Lauth R R.Bottom trawl surveys in the northern Bering Sea indicate recent shifts in the distribution of marine species[J].Polar Biology,2019,42(2):407-421.
[39] 宋婷婷,樊伟,伍玉梅.卫星遥感海面高度数据在渔场分析中的应用综述[J].海洋通报,2013,32(4):474-480.Song T T,Fan W,Wu Y M.Application of satellite remote sensing sea surface height data to fisheries analysis[J].Marine Science Bulletin,2013,32(4):474-480.
[40] Wildes S,Whittle J,Nguyen H,et al.Walleye Pollock breach the Bering Strait:A change of the cods in the Arctic[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2022,204:105165.
基本信息:
DOI:10.16441/j.cnki.hdxb.20240093
中图分类号:S931.1;P467
引用信息:
[1]程梦娇,马舒扬,罗燕萍等.气候变化情景下北极和亚北极海域鲱类和鳕类适宜栖息地的时空变化[J].中国海洋大学学报(自然科学版),2025,55(03):34-44.DOI:10.16441/j.cnki.hdxb.20240093.
基金信息:
自然资源部“南极重点海域对气候变化的响应和影响”专项(IRASCC 01-02-05C); 国家自然科学基金项目(42376100)资助~~