nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2025 03 v.55 45-54
温度变化对典型海洋定鞭藻有机质C∶N∶P的影响
基金项目(Foundation): 崂山实验室科技创新项目(LSKJ202204005)资助~~
邮箱(Email): dingyang12@ouc.edu.cn;
DOI: 10.16441/j.cnki.hdxb.20240067
中文作者单位:

中国海洋大学深海圈层与地球系统前沿科学中心海洋化学理论与工程技术教育部重点实验室;青岛海洋科技中心海洋生态与环境科学功能实验室;上海交通大学海洋学院;中国科学院大学广州地球化学研究所;

摘要(Abstract):

本文系统研究了温度变化(12、18和24℃)对两种典型定鞭藻(大洋桥石藻Gephyrocapsa oceanica、球等鞭金藻Isochrysis galbana)胞内颗粒有机质C∶N∶P(POC、PON、POP)含量与比值的影响。结果表明,尽管升温对两种定鞭藻POC、PON、POP含量与比值无显著影响,但其对两种微藻的影响具有一定的规律。升温总体导致两种微藻胞内POC、PON、POP含量下降(4%~25%),其中大洋桥石藻胞内POC和PON含量较高、球等鞭金藻胞内POP含量较高。升温总体导致两种微藻POC∶PON下降(~14%)、PON∶POP升高(~20%)、POC∶POP几乎无变化。本研究量化了温度变化对海洋典型定鞭藻胞内POC、PON、POP含量与比值的影响,为深入理解全球气候变化背景下定鞭藻对海洋碳循环的反馈效应具有重要意义。

关键词(KeyWords): 全球变暖;颗石藻;球等鞭金藻;颗粒有机碳;颗粒有机氮;颗粒有机磷
参考文献

[1] Wang C.Three-ocean interactions and climate variability:A review and perspective[J].Climate Dynamics,2019,53(7-8):5119-5136.

[2] Oliver E C J,Benthuysen J A,Darmaraki S,et al.Marine heatwaves[J].Annual Review of Marine Science,2021,13:313-342.

[3] Pachauri R K,Meyer L A.IPCC,2014:Climate change 2014:Synthesis report[M].Contribution of Working Groups Ⅰ,Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,Switzerland:IPCC:Geneva,2014.

[4] Jackson R,Gabric A.Climate change impacts on the marine cycling of biogenic sulfur:A review[J].Microorganisms,2022,10(8):1581.

[5] Lewandowska A M,Boyce D G,Hofmann M,et al.Effects of sea surface warming on marine plankton[J].Ecology Letters,2014,17(5):614-623.

[6] 薛佩珍,龙星玥,薛潇,等.南海海表温度时空分布特征及其对不同厄尔尼诺事件的响应[J].宁夏大学学报(自然科学版),2022,43(3):1-5.Xue P Z,Long X Y,Xue X,et al.Temporal and spatial distribution characteristics of sea surface temperature in the South China Sea and its response to different El NINO events[J].Journal of Ningxia University (Natural Science Edition),2022,43(3):1-5.

[7] 李琰,范文静,骆敬新,等.2017年中国近海海温和气温气候特征分析[J].海洋通报,2018,37(3):296-302.Li Y,Fan W J,Luo J X,et al.Climatic characteristics of sea surface temperature and air temperature over the China seas in 2017[J].Marine Science Bulletin,2018,37(3):296-302.

[8] Barton S,Yvon Durocher G.Quantifying the temperature dependence of growth rate in marine phytoplankton within and across species[J].Limnology and Oceanography,2019,64(5):2081-2091.

[9] Dutkiewicz S,Scott J R,Follows M J.Winners and losers:Ecological and biogeochemical changes in a warming ocean[J].Global Biogeochemical Cycles,2013,27(2):463-477.

[10] 孙强,薛存金,刘敬一,等.全球海洋初级生产力与海洋环境要素时空关联模式挖掘分析[J].海洋环境科学,2020,39(3):340-347.Sun Q,Xue C J,Liu J Y,et al.Spatiotemporal association patterns between marine net primary production and environmental parameters in a view of data mining[J].Marine Environmental Science,2020,39(3):340-347.

[11] Eikrem W,Medlin L K,Henderiks J,et al.Haptophyta[M].Switzerland:Springer International Publishing AG,2017:893-953.

[12] Sukhanova I,Flint M.Anomalous blooming of coccolithophorids over the eastern Bering Sea shelf[J].Oceanology,1998,38(4):557-560.

[13] Ziveri P,de Bernardi B,Baumann K,et al.Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2007,54(5-7):659-675.

[14] Kong F,Ran Z,Xie H,et al.Effects of three microalgal diets varying in LC-PUFA composition on growth,Fad,and Elovl expressions,and fatty acid profiles in juvenile razor clam Sinonovacula constricta[J].Fishes,2023,8(10):484.

[15] Edding M,Tala F.Copper transfer and influence on a marine food chain[J].Bulletin of Environmental Contamination and Toxicology,1996,57(4):617-624.

[16] Xu H,Liu H,Chen F,et al.Ocean acidification affects physiology of coccolithophore Emiliania huxleyi and weakens its mechanical resistance to copepods[J].Marine Environmental Research,2023,192:106232.

[17] 于娟,赵丽军,杨桂朋,等.海水pH对颗石藻生长以及二甲基硫产生的影响[J].中国海洋大学学报(自然科学版),2015,45(2):72-79.Yu J,Zhao L J,Yang G P,et al.The influence of seawater pH on the growth and dimethylsulfide production of Emiliania huxleyi[J].Periodical of Ocean University of China,2015,45(2):72-79.

[18] Bi R,Ismar S M H,Sommer U,et al.Simultaneous shifts in elemental stoichiometry and fatty acids of Emiliania huxleyi in response to environmental changes[J].Biogeosciences,2018,15(4):1029-1045.

[19] Feng Y,Roleda M Y,Armstrong E,et al.Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi[J].Biogeosciences,2018,15(2):581-595.

[20] 张健,李佳芮,纪大伟,等.黄东海夏、冬季颗石藻群落及其分布研究[J].海洋科学,2016,40(2):41-54.Zhang J,Li J R,Ji D W,et al.Distribution of coccolithophores in the Yellow Sea and East China Sea in summer and winter[J].Marine Sciences,2016,40(2):41-54.

[21] 郭兵,龚阳敏,万霞,等.光强和温度对球等鞭金藻(Isochrysis sphaerica)生长及其脂肪酸的影响[J].中国油料作物学报,2011,33(3):295-301.Guo B,Gong Y M,Wan X,et al.Effect of light intensity and temperature on growth and fatty acid composition of Isochrysis sphaerica[J].Chinese Journal of Oil Crop Sciences,2011,33(3):295-301.

[22] 梁英,刘春强,陈书秀,等.温度对球等鞭金藻8701叶绿素荧光参数及生长的影响[J].海洋湖沼通报,2011(2):43-51.Liang Y,Liu C Q,Chen S X,et al.Effects of temperature on the chlorophyll fluorescence parameters and growth of Isochrysis galbana 8701[J].Transactions of Oceanology and Limnology,2011(2):43-51.

[23] Cao Z,Bi R,Zhang C,et al.Quantification of multiple environmental controls on lipid biomarkers in common marine diatoms and dinoflagellates[J].Marine Biology,2023,170:136.

[24] Bi R,Cao Z,Ismar-Rebitz S M H,et al.Responses of marine diatom-dinoflagellate competition to multiple environmental drivers:Abundance,elemental,and biochemical aspects[J].Frontiers in Microbiology,2021,12:731-786.

[25] Ismar S M H,Hansen T,Sommer U.Effect of food concentration and type of diet on Acartia survival and naupliar development[J].Marine Biology,2008,154(2):335-343.

[26] Provasoli L.Growing Marine Seaweeds[M].Oxford:Pergamon Press,1963:9-17.

[27] Bi R,Arndt C,Sommer U.Stoichiometric responses of phytoplankton species to the interactive effect of nutrient supply ratios and growth rates[J].Journal of Phycology,2012,48(3):539-549.

[28] Xu K,Gao K,Villafaňe V E,et al.Photosynthetic responses of Emiliania huxleyi to UV radiation and elevated temperature:Roles of calcified coccoliths[J].Biogeosciences,2011,8(6):1441-1452.

[29] Jiang X,Zhang Y,Hutchins D A,et al.Nitrogen-limitation exacerbates the impact of ultraviolet radiation on the coccolithophore Gephyrocapsa oceanica[J].Journal of Photochemistry and Photobiology B:Biology,2022,226:112368.

[30] Jin P,Gao K,Beardall J.Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification[J].Evolution,2013,67(7):1869-1878.

[31] Bi R,Ismar-Rebitz S M H,Sommer U,et al.Ocean-related global change alters lipid biomarker production in common marine phytoplankton[J].Biogeosciences,2020,17(24):6287-6307.

[32] Sharp J H.Improved analysis for “particulate” organic carbon and nitrogen from seawater[J].Limnology and Oceanography,1974,19(6):984-989.

[33] Hansen H P,Koroleff F.Determination of Nutrients[M].Weinheim,Germany:Wiley-VCH,1999:159-228.

[34] Larsen S H,Beardall J.The effect of temperature and salinity on DMSP production in Gephyrocapsa oceanica (Isochrysidales,Coccolithophyceae)[J].Phycologia,2023,62(2):152-163.

[35] Buitenhuis E T,Pangerc T,Franklin D J,et al.Growth rates of six coccolithophorid strains as a function of temperature[J].Limnology and oceanography,2008,53(3):1181-1185.

[36] 王平,毛克彪,孟飞,等.中国东海海表温度时空演化分析[J].国土资源遥感,2020,32(4):227-235.Wang P,Mao K B,Meng F,et al.Spatiotemporal evolution of sea surface temperature in the East China Sea[J].Remote Sensing for Natural Resources,2020,32(4):227-235.

[37] 佟善英.钙化浮游植物颗石藻环境变化生理学研究[D].厦门:厦门大学,2018.Tong S Y.Studies on Environmental Change Physiology of Calcifying Phytoplankton (Coccolithophores)[D].Xiamen:Xiamen University,2018.

[38] 魏晓雪,田晨,冯剑丰,等.磷限制条件下单胞藻胞内磷储量差异机理研究[J].环境科学研究,2022,35(6):1398-1406.Wei X X,Tian C,Feng J F,et al.Mechanism of intracellular phosphorus storage differences in several unicellular algae under phosphorus limitation[J].Research of Environmental Sciences,2022,35(6):1398-1406.

[39] Elser J,Sterner R,Gorokhova E,et al.Biological stoichiometry from genes to ecosystems[J].Ecology Letters,2000,3(6):540-550.

[40] Moreno A R,Martiny A C.Ecological stoichiometry of ocean plankton[J].Annual Review of Marine Science,2018,10:43-69.

[41] Sheward R M,Liefer J D,Irwin A J,et al.Elemental stoichiometry of the key calcifying marine phytoplankton Emiliania huxleyi under ocean climate change:A meta-analysis[J].Global Change Biology,2023,29(15):4259-4278.

[42] Toseland A,Daines S J,Clark J R,et al.The impact of temperature on marine phytoplankton resource allocation and metabolism[J].Nature Climate Change,2013,3(11):979-984.

[43] Krumhardt K M,Lovenduski N S,Iglesias-Rodriguez M D,et al.Coccolithophore growth and calcification in a changing ocean[J].Progress in Oceanography,2017,159:276-295.

[44] Findlay H S,Calosi P,Crawfurd K.Determinants of the PIC:POC response in the coccolithophore Emiliania huxleyi under future ocean acidification scenarios[J].Limnology and Oceanography,2011,56(3):1168-1178.

[45] Gerecht A C,?upraha L,Edvardsen B,et al.High temperature decreases the PIC/POC ratio and increases phosphorus requirements in Coccolithus pelagicus (Haptophyta)[J].Biogeosciences,2014,11(13):3531-3545.

[46] Chen M,Bi R,Chen X,et al.Stoichiometric and sterol responses of dinoflagellates to changes in temperature,nutrient supply and growth phase[J].Algal Research,2019,42:101609.

[47] Thomas M K,Kremer C T,Klausmeier C A,et al.A global pattern of thermal adaptation in marine phytoplankton[J].Science,2012,338(6110):1085-1088.

[48] Barton S,Jenkins J,Buckling A,et al.Evolutionary temperature compensation of carbon fixation in marine phytoplankton[J].Ecology Letters,2020,23(4):722-733.

[49] Zhang Y,Ma S,Yang X,et al.Effect of ocean warming on pigment and photosynthetic carbon fixation of plankton assemblage in Pingtan Island of Southeast China[J].Marine Environmental Research,2023,192:106196.

[50] Kwiatkowski L,Aumont O,Bopp L,et al.The impact of variable phytoplankton stoichiometry on projections of primary production,food quality,and carbon uptake in the global ocean[J].Global Biogeochemical Cycles,2018,32(4):516-528.

[51] Boersma M,Aberle N,Hantzsche F M,et al.Nutritional limitation travels up the food chain[J].International Review of Hydrobiology,2008,93(4-5):479-488.

[52] Thomas P K,Kunze C,Van de Waal D B,et al.Elemental and biochemical nutrient limitation of zooplankton:A meta-analysis[J].Ecology Letters,2022,25(12):2776-2792.

[53] Taipale S,Strandberg U,Peltomaa E,et al.Fatty acid composition as biomarkers of freshwater microalgae:Analysis of 37 strains of microalgae in 22 genera and in seven classes[J].Aquatic Microbial Ecology,2013,71(2):165-178.

[54] Brett M T,Müller-Navarra D C,Ballantyne A P,et al.Daphnia fatty acid composition reflects that of their diet[J].Limnology and Oceanography,2006,51(5):2428-2437.

基本信息:

DOI:10.16441/j.cnki.hdxb.20240067

中图分类号:Q948.8;P73

引用信息:

[1]崔家璇,秦肖,涂佳敏等.温度变化对典型海洋定鞭藻有机质C∶N∶P的影响[J].中国海洋大学学报(自然科学版),2025,55(03):45-54.DOI:10.16441/j.cnki.hdxb.20240067.

基金信息:

崂山实验室科技创新项目(LSKJ202204005)资助~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文