| 609 | 5 | 444 |
| 下载次数 | 被引频次 | 阅读次数 |
为探讨在低温胁迫下条斑紫菜(Neopyropia yezoensis)的生长及光合生理生化响应,本实验以条斑紫菜叶状体为研究对象,测定2℃低温处理条件下条斑紫菜的相关光合生理指标、光合色素含量以及日生长率。研究表明,条斑紫菜叶状体在低温胁迫下生长变缓,野生样品在短期(4 d)胁迫下日生长率(DGR)为1.59%·d-1~3.77%·d-1,长期(20 d)胁迫后DGR为2.19%·d-1~4.12%·d-1;苗期条斑紫菜在低温胁迫(2℃)前2 d时DGR为3.75%·d-1,处理4 d时DGR为8.79%·d-1,经过6 d胁迫后DGR为7.19%·d-1。此外在低温胁迫下条斑紫菜的光合能力也减弱,野生样品在短期(4 d)低温胁迫下,Fv/Fm(PSⅡ最大光化学量子产量)、ΦPSⅡ(PSⅡ实际光化学量子产量)和qP(光化学淬灭系数)均降低,NPQ(非光化学淬灭系数)则升高;经过长期(20 d)胁迫后,Fv/Fm仍显著降低,ΦPSⅡ和qP上升,NPQ降至最低。苗期条斑紫菜在低温胁迫下前2 d Fv/Fm、ΦPSⅡ、NPQ和qP均降低,胁迫4 d时Fv/Fm、ΦPSⅡ、NPQ和qP上升,胁迫6 d时各荧光参数与4 d时相比无显著变化。苗期条斑紫菜低温胁迫6 d后,叶绿素a、藻蓝蛋白含量显著下降(P<0.05),藻红蛋白含量极显著下降(P<0.01),别藻蓝蛋白含量极显著上升(P<0.01)。研究结果表明,条斑紫菜在光合生理及生化上响应低温胁迫并最终影响其生长速率,且随着低温胁迫时间的延长表现出一定的适应性。本研究为探讨条斑紫菜对低温胁迫的适应机制和筛选耐低温良种提供数据参考。
Abstract:In order to explore the growth performance and photosynthetic physiological and biochemical responses of Neopyropia yezoensis to low temperature stress, we took the thallus of N. yezoensis as the studying material, and measured the relevant photosynthetic physiological indexes, photosynthetic pigment content and daily growth rate of N. yezoensis at 2 ℃. The results showed that the growth of N. yezoensis thallus slows down under low temperature stress, and the daily growth rate(DGR) of wild samples ranges from 1.59%·d-1 to 3.77%·d-1 in 4 days and from 2.19%·d-1 to 4.12%·d-1 in 20 days. At the seedling stage, the DGR was 3.75%·d-1 in 2 days ahead of stressing, 8.79%·d-1 in 4 days after stressing, and 7.19%·d-1 in 6 days after stressing. Simultaneously, the photosynthetic capacity decreased, and Fv/Fm(maximum photochemical quantum yield of PSⅡ), ΦPSⅡ(actual photochemical quantum yield of PSⅡ) and qP(photochemical quenching coefficient) of wild samples decreased in 4 days under low temperature stress while NPQ(non-photochemical quenching coefficient) increased. After stressing for 20 days, Fv/Fm still decreased significantly and ΦPSⅡand qP increased while NPQ decreased to the lowest. Fv/Fm, ΦPSⅡ, NPQ and qP decreased in the first 2 days under low temperature stress, and Fv/Fm, ΦPSⅡ, NPQ and qP increased in 4 days of stressing. There was no significant change in fluorescence parameters in 6 days of stressing in comparison with those in 4 days. After 6 days of low temperature stressing at the seedling stage, the content of chlorophyll a and phycocyanin significantly decreased(P<0.05), the content of phycoerythrin significantly decreased(P<0.01), and the content of allophycocyanin significantly increased(P<0.01). The results showed that the photosynthetic physiology and biochemistry of N. yezoensis respond the low temperature stressing and eventually its growth rate is influenced, showing certain adaptability with the extension of low temperature stressing. Our findings provided a data reference for exploring the adaptation mechanism of N. yezoensis to low temperature stress and screening the low temperature resistant varieties.
[1] 陆勤勤,周伟,朱建一,等.中国条斑紫菜产业的历史、现状与发展趋势[J].中国海洋经济,2018(1):3-11.Lu Q Q,Zhou W,Zhu J Y,et al.The history,current situation,and development trends of China’s Porphyra yezoensis industry[J].Marine Economy in China,2018(1):3-11.
[2] Neefus C,Christopher D,Lindsay A,et al.Effects of temperature,light level,and photoperiod on the physiology of Porphyra umbilicalis Kutzing from the Northwest Atlantic,a candidate for aquaculture[J].Journal of Applied Phycology,2016,28:1815-1826.
[3] 巩东辉,王志忠,季祥,等.低温、强光胁迫对鄂尔多斯钝顶节旋藻光合速率及光合色素含量的影响[J].内蒙古农业大学学报(自然科学版),2016,37(6):5.Gong D H,Wang Z Z,Ji X,et al.THE effect of low temperature and high light on the photosynthetic rate and photosynthetic pigment content of Arthroapira platensis in an alkali lake of the Erdos plateau[J].Journal of Inner Mongolia Agricultural University(Natural Science Edition),2016,37(6):5.
[4] Takahashi M,Kumari P,Li C,et al.Low temperature causes discoloration by repressing growth and nitrogen transporter gene expression in the edible red alga Pyropia yezoensis[J].Marine Environmental Research,2020,159:105004.
[5] Potijun S,Yaisamlee C,Sirikhachornkit A.Pigment production under cold stress in the green microalga Chlamydomonas reinhardtii[J].Agriculture,2021,11(6):564.
[6] Lawson T,Vialet-Chabrand S.Chlorophyll fluorescence imaging[J].Methods in Molecular Biology,2018,1770:121-140.
[7] 梁英,范丽敏,陈书秀,等.温度对等鞭金藻塔溪堤品系细胞密度和叶绿素荧光参数的影响[C]//中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集.上海:中国海洋湖沼学会,2011:422-427.Liang Y,Fan L M,Chen S X,et al.The effect of temperature on cell density and chlorophyll fluorescence parameters of the Isochrysis galbana (Tahitian strain)[C]// Abstracts of the Eighth Congress and the Sixteenth Symposium of the Chinese Algae Society.Shanghai:Chinese Society for Oceanology and Limnology,2011:422-427.
[8] 李虎.卡帕藻和麒麟菜光合和抗氧化系统对温度胁迫的响应[D].青岛:中国科学院大学(中国科学院海洋研究所),2017.Li H.Response of Photosynthetic and Antioxidant Systems to Temperature Stress in Kappaphycus alvarezii and Eucheuma serra[D].Qingdao:University of Chinese Academy of Sciences (Institute of Oceanography,Chinese Academy of Sciences),2017.
[9] 王毅,杨宏福,李树德.园艺植物冷害和抗冷性的研究[J].园艺,1994,21(3):239-244.Wang Y,Yang H F,Li S D.Research on cold damage and cold resistance of horticultural plants[J].Gardening,1994,21(3):239-244.
[10] 任晓咏.低温胁迫对三角褐指藻生长和生理生化影响及其LEA基因的克隆[D].大连:辽宁师范大学,2011(1):89-92.Ren X Y.The Effects of Low Temperature Stress on the Growth,Physiology,and Biochemistry of Pseudomonas aeruginosa and the Cloning of Its LEA Gene[D].Dalian:Liaoning Normal University,2011(1):89-92.
[11] 何德炬.低温、弱光、缺氧及恢复培养对铜绿微囊藻生理生长的影响[J].广东化工,2020,47(16):53-57,60.He D J.The effects of low temperature,weak light,hypoxia,and recovery culture on the physiological growth of Microcystis aeruginosa[J].Guangdong Chemical Industry,2020,47(16):53-57,60.
[12] Zhu S,Gu D,Lu C,et al.Cold stress tolerance of the intertidal red alga Neoporphyra haitanensis[J].BMC Plant Biology,2022,22(1):114.
[13] Yong Y S,Yong W T L,Anton A.Analysis of formulae for determination of seaweed growth rate[J].Journal of Applied Phycology,2013,25:1831-1834.
[14] 张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999(4):444-448.Zhang S R.The significance and discussion of chlorophyll fluorescence kinetic parameters[J].Chinese Bulletin of Botany,1999(4):444-448.
[15] Kursar T A,Van D,Alberte R S.Light-harvesting system of the red alga gracilaria tikvahiae:II.phycobilisome characteristics of pigment mutants[J].Plant Physiology,1983,73(2):361-369.
[16] Wellburn A R.The spectral determination of chlorophyll a and chlorophyll b,as well as total carotenoids,using various solvents with spectrophotometers of different resolution[J].Journal of Plant Physiology,1994,144(3):307-313.
[17] 王文森.变异系数——一个衡量离散程度简单而有用的统计指标[J].中国统计,2007(6):41-42.DOI:10.3969/j.issn.1002-4557.2007.06.025.Wang W S.Coefficient of variation-a simple and useful statistical index to measure the degree of dispersion[J].China Statistics,2007(6):41-42.DOI:10.3969/j.issn.1002-4557.2007.06.025.
[18] 何培民,张政值,张荣铣.条斑紫菜的光合作用及其主要影响因素[J].南京农业大学学报,1999(4):19-22.He P M,Zhang Z Z,Zhang R X.Photosynthesis of Porphyra yezoensis and its main influencing factors[J].Journal of Nanjing Agricultural University,1999(4):19-22.
[19] Guidi L,Landi M,Penella C,et al.Application of modulated chlorophyll fluorescence and modulated chlorophyll fluorescence imaging to study the environmental stresses effect[J].Annali di Botanica,2016(6):39-56.
[20] 尤鑫,龚吉蕊.叶绿素荧光动力学参数的意义及实例辨析[J].西部林业科学,2012,41(5):90-94.You X,Gong J R.Significance and example analysis of chlorophyll fluorescence kinetic parameters[J].Journal of West China Forestry Science,2012,41(5):90-94.
[21] Muller P,Li X P,Niyogi K K.Non-photochemical quenching.A response to excess light energy[J].Plant Physiology,2001,125(4):1558-1566.
[22] 程凌江,蒋丽金,马金石.条斑紫菜中R-藻红蛋白的纯化及其α和β亚基的分离与发色团含量的测定[J].海洋与湖沼,1990,21(4):337-342.Cheng L J,Jiang L J,Ma J S.Purification and characterization of R-phycoerythrin from Porphyra yezoensis α and β Separation of subunits and determination of chromophore content[J].Oceanologia et Limnologia Sinica,1990,21(4):337-342.
[23] Yan X H,Fujita Y,Aruga Y.Induction and characterization of pigmentation mutants in Porphyra yezoensis(Bangiales,Rhodophyta)[J].Journal of Applied Phycology,2000,12:69-81.
[24] 王金锋,许璞,朱建一,等.紫菜属海藻色素突变的研究[J].海洋水产研究,2007,28(2):28-35.Wang J F,Xu P,Zhu J Y,et al.Study on mutation of pigment in seaweed of the genus Porphyra[J].Marine Fisheries Research,2007,28(2):28-35.
[25] 严兴洪,张淑娟,黄林彬.60Co-γ 射线对条斑紫菜 (Porphyra yezoensis) 的诱变效果与色素突变体分离[J].海洋与湖沼,2009,40(1):56-61.Yan X H,Zhang S J,Huang L B.60Co-γ mutagenic effect of X-rays on Porphyra yezoensis and isolation of pigment mutants[J].Oceanologia et Limnologia Sinica,2009,40(1):56-61.
[26] Miura A,Shin J A.Cross breeding in cultivars of Porphyra yezoensis Ueda (Bangisles,Rhodophyta).A preliminary report[J].The Korean Journal of Phycology,1989,4:207-211.
[27] Zhang T,Li J,Ma F,et al.Study of photosynthetic characteristics of the Pyropia yezoensis thallus during the cultivation process[J].Journal of Applied Phycology,2014,26(2):859-865.
[28] 曾呈奎.经济海藻种质种苗生物学[M].济南:山东科学技术出版社,1999.Zeng C K.Germplasm and Seedling Biology of Economic Seaweed[M].Jinan:Shandong Science and Technology Press,1999.
基本信息:
DOI:10.16441/j.cnki.hdxb.20230169
中图分类号:S917.3
引用信息:
[1]谢聪颖,钟雪峰,乌兰,等.低温胁迫下条斑紫菜的生长和光合生理生化响应[J].中国海洋大学学报(自然科学版),2024,54(08):33-42.DOI:10.16441/j.cnki.hdxb.20230169.
基金信息:
国家重点研究发展计划项目(2022YFD2400105,2020YFD0900702)资助~~