| 351 | 0 | 240 |
| 下载次数 | 被引频次 | 阅读次数 |
本文利用中国地面高时空分辨率的降水资料,分析台风“利奇马”(Lekima)登陆期间,其外雨带在浙江沿海地区产生的降水特征。结果表明,“利奇马”外雨带影响下浙江地区降水过程的累计降水、分钟雨强均呈现显著极端性,强降水中心呈现带状分布特征,在空间和时间上具有明显的非均匀性。同时,本次降水呈现出多种时间尺度的波动特征,周期128~192 min的波动信号贯穿了整个降水过程。外雨带主要位于台风移动方向前侧,其不同位置的降水波动特征有所不同,雨带外边缘降水小波功率谱有两个明显的大值中心,即除周期128~192 min波动信号外,还有准周期16~64 min的波动特征;雨带内侧则分为周期128~256 min的波动信号和多个周期在16 min以下的高频波动信号。本文的研究对提高登陆台风的降水精细化预测水平有重要意义。
Abstract:Based on the precipitation data of high spatial and temporal resolution on the ground in China, the precipitation characteristics generated by the outer rainband of typhoon Lekima in the coastal areas of Zhejiang during its landfalling were analyzed. The results showed that the cumulative precipitation, minute rain intensity and process precipitation in the precipitation process in Zhejiang under the influence of the outer rainband of typhoon Lekima showed significant extremes, and the heavy precipitation center showed a zonal distribution. It has obvious non-uniformity in space and time. At the same time, the precipitation showed a variety of scale fluctuation characteristics, and the wave signal with a period of 128 to 192 min ran through the whole precipitation process. The outer rainband is mainly located in front of the typhoon moving direction, and the precipitation fluctuation characteristics are different at different locations. The wavelet power spectrum of precipitation at the outer edge of the rainband shows two obvious large value centers, that is, in addition to the periodic signal of 128~192 min, there is also a quasi-periodic wave characteristic of 16~64 min. In addition to the periodic 128~256 min wave signal, there are a number of high-frequency wave signals with a period below 16 min inside the rainband. These findings are of scientific value for understanding the distribution and evolution of fine structure of typhoon precipitation.
[1] 陈联寿,孟智勇.我国热带气旋研究十年进展[J].大气科学,2001,25(3):420-432.Chen L S,Meng Z Y.An overview on tropical cyclone research progress in China during the past ten years[J].Chinese Journal of Atmospheric Sciences,2001,25(3):420-432.
[2] 李真真,吴立广,刘青元.近20a影响我国台风活动变化趋势[J].气象科学,2016,36(6):752-759.Li Z Z,Wu L G,Liu Q Y.Variation trend of typhoon activity influencing China during the past 20 years[J].Journal of the Meteorological Sciences,2016,36(6):752-759.
[3] 卢莹,赵海坤,赵丹,等.1984—2017年影响中国热带气旋灾害的时空特征分析[J].海洋学报,2021,43(6):1-17.Lu Y,Zhao H K,Zhao D,et al.Spatial-temporal characteristic of tropical cyclone disasters in China during 1984—2017[J].Acta Oceanologica Sinica,2021,43(6):1-17.
[4] 任福民,向纯怡.登陆热带气旋降水预报研究回顾与展望[J].海洋气象学报,2017,37(4):8-18.Ren F M,Xiang C Y.Review and prospect of researches on the prediction of precipitation associated with landfalling tropical cyclones[J].Journal of Marine Meteorology,2017,37(4):8-18.
[5] 陈联寿,孟智勇,丛春华.台风暴雨落区研究综述[J].海洋气象学报,2017,37(4):1-7.Chen L S,Meng Z Y,Cong C H.An overview on the research of typhoon rainfall distribution[J].Journal of Marine Meteorology,2017,37(4):1-7.
[6] Li Q Q,Wang Y Q.A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone[J].Monthly Weather Review,2012,140:2782-2805.
[7] Kevin C,Yu Z F,Russell L E,et al.Recent advances in research and forecasting of tropical cyclone rainfall[J].Tropical Cyclone Research and Review,2018,72:106-127.
[8] Yang M J,Wu Y C,Liou Y C.The study of inland eyewall reformation of Typhoon Fanapi (2010) using numerical experiments and vorticity budget analysis[J].Journal of Geophysical Research:Atmospheres,2018,123(17):9604-9623.
[9] Corbosiero K L,Molinari J.The effects of vertical wind shear on the distribution of convection in tropical cyclones[J].Monthly Weather Review,2002,130(8):2110-2123.
[10] Corbosiero K L,Molinari J.The relationship between storm motion,vertical wind shear,and convective asymmetries in tropical cyclones[J].Journal of the Atmospheric Sciences,2003,60(2):366-376.
[11] Cecil,Daniel J.Satellite-derived rain rates in vertically sheared tropical cyclones[J].Geophysical Research Letters,2007,34(2):L02811.
[12] Ueno M.Observational analysis and numerical evaluation of the effects of vertical wind shear on the rainfall asymmetry in the typhoon inner-core region[J].Journal of the Meteorological Society of Japan Ser Ⅱ,2007,85(2):115-136.
[13] Zhou H B,Bai A J,Cai Q B.Analysis on asymmetric precipitation of the strong typhoon Nesat (1117) before and after landing on Hainan Island[J].Journal of Tropical Meteorology,2017,33(3):386-398.
[14] Yu Z F,Wang Y Q,Xu H M.Observed rainfall asymmetry in tropical cyclones making landfall over China[J].Journal of Applied Meteorology and Climatology,2015,54(1):117-136.
[15] Ouyang P,Wang Y Q,Zhang X N,et al.A numerical study of mesoscale-topography influence on the heavy rainband of typhoon Hato (2017)[J].Journal of Tropical Meteorology,2021,27(4):393-405.
[16] 陈涛,董林,罗玲,等.台风利奇马登陆期间的对流结构特征及对强降雨影响[J].气象,2021,47(12):1433-1443.Chen T,Dong L,Luo L Y,et al.Convection structure and impact on severe precipitation during landing of typhoon Lekima[J].Meteorology Monthly,2021,47(12):1433-1443.
[17] Yang S,Chen B,Zhang F,et al.Characteristics and causes of extremely persistent heavy rainfall of tropical cyclone In-Fa (2021)[J].Atmosphere,2022,13(3):398-419.
[18] Lu Y,Chen P Y,Yu H,et al.Parameterized tropical cyclone precipitation model for catastrophe risk assessment in China[J].Journal of Applied Meteorology and Climatology,2022,61(9):1291-1303.
[19] 陈宏,杨晓君,尉英华,等.干冷空气入侵台风“海棠”残余低压引发的华北地区大暴雨分析[J].暴雨灾害,2020,39(3):241-249.Chen H,Yang X J,Wei Y H,et al.Analysis of the heavy rain in North China for dry cold air intruding into typhoon "Begonia" depression[J].Torrential Rain and Disasters,2020,39(3):241-249.
[20] Meng W G,Wang Y.Adiagnostic study on heavy rainfall induced by typhoon Utor (2013) in South China:1.Rainfall asymmetry at landfall[J].Journal of Geophysical Research:Atmospheres,2016a,121(21):12781-12802.
[21] Meng W G,Wang Y.Adiagnostic study on heavy rainfall induced by landfalling typhoon Utor (2013) in South China:2.Postlandfall rainfall[J].Journal of Geophysical Research:Atmospheres,2016b,121(21):12803-12819.
[22] Deng D,Ritchie E A.Rainfallmechanisms for one of the wettest tropical cyclones on record in Australia-Oswald (2013)[J].Monthly Weather Review,2020,148(6):2503-2525.
[23] Lonfat M,Marks Jr F D,Chen S S.Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager:A global perspective[J].Monthly Weather Review,2004,132(7):1645-1660.
[24] Yu Z F,Wang Y Q,Xu H M,et al.On the relationship between intensity and rainfall distribution in tropical cyclones making landfall over China[J].Journal of Applied Meteorology and Climatology,2017,56(10):2883-2901.
[25] Wang Y Q.How do outer spiral rainbands affect tropical cyclone structure and intensity?[J].Journal of the Atmospheric Sciences,2009,66:1250-1273.
[26] 赵玉春,王叶红,陈健康,等.“莫兰蒂”台风 (2016) 登陆前后精细结构及其引发福建特大暴雨的模拟研究[J].暴雨灾害,2018,37(2):135-148.Zhao Y C,Wang Y H,Chen J K,et al.Numerical investigation on detailed structure of Typhoon "Meranti"(2016) and extreme heavy rainfall event induced by it before and after landfall in Fujian[J].Torrential Rain and Disasters,2018,37(2):135-148.
[27] 杨舒楠,曹勇,陈涛,等.台风苏迪罗登陆次日分散性暴雨成因及预报着眼点[J].气象,2019,45(1):38-49.Yang S N,Cao Y,Chen T,et al.Causes and focus points of forecasting the scattered rainstorm of typhoon Soudelor on Day 2 after landing[J].Meteorology Monthly,2019,45(1):38-49.
[28] Lin Y L,Li Y L,Li Q Q,et al.A long-lasting vortex Rossby wave-induced rainband of Typhoon Longwang(2005)[J].Bulletin of the American Meteorological Society,2018,99(6):1127-1134.
[29] Dai H N,Zhao K,Li Q Q,et al.Quasi-periodic intensification of convective asymmetries in the outer eyewall of typhoon Lekima(2019)[J].Geophysical Research Letters,2021,48(5):e2020GL091633.
[30] Huang H,Li Q Q,Zhao K,et al.Microphysical characteristics of the phase-locking VRW-induced asymmetric convection in the outer eyewall of Super Typhoon Lekima(2019)[J].Geophysical Research Letters,2022,49(9):e2021GL096869.
[31] Yu C K,Tsai C L.Surface pressure features of landfalling typhoon rainbands and their possible causes[J].Journal of the Atmospheric Sciences,2010,67(9):2893-2911.
[32] 王坚红,姜云雁,崔晓鹏,等.1956—2012年浙闽登陆热带气旋降水精细化观测统计分析[J].大气科学,2018,42(1):16-32.Wang J H,Jiang Y Y,Cui X P,et al.Statistical analysis of accurate observations of tropical cyclone precipitation in Zhejiang and Fujian Provinces from 1956 to 2012[J].Chinese Journal of Atmospheric Sciences,2018,42(1):16-32.
[33] 焦亚音,冉令坤,李娜,等.台风“彩虹” (2015) 高分辨数值模拟及涡旋Rossby波特征分析[J].物理学报,2017,66(8):37-47.Jiao Y Y,Ran L K,Li N,et al.High resolution numerical simulation of typhoon Mujigae (2015) and analysis of vortex Rossby waves[J].Acta Physica Sinica,2017,66(8):37-47.
[34] 周冠博,焦亚音,钱奇峰,等.1822号台风“山竹”的涡旋Rossby波特征分析[J].海洋气象学报,2020,40(3):37-47.Zhou G B,Jiao Y Y,Qian Q Q,et al.Analysis on characteristics of vortex Rossby wave in Typhoon Mangkhut (1822)[J].Journal of Marine Meteorology,2020,40(3):37-47.
[35] 薛一迪,崔晓鹏.“威马逊” (1409) 强降水物理过程模拟诊断研究[J].大气科学,2020,44(6):1320-1336.Xue Y D,Cui X P.Diagnostic and numerical study on physical process of strong rainfall associated with Rammasun(1409)[J].Chinese Journal of Atmospheric Sciences (in Chinese),2020,44(6):1320-1336.
[36] 谷欣蕊,罗亚丽,肖天贵,等.台风“苗柏”影响下局地强降水精细化垂直结构特征观测分析[J].成都信息工程大学学报,2022,37(3):290-301.Gu R X,Luo Y L,Xiao T G,et al.Observational analysis of the fine-scale vertical structure of localized heavy precipitation associated with typhoon “Merbok”[J].Journal of Chengdu University of Information Technology,2022,37(3):290-301.
[37] 胡鑫蓉.“黑格比”台风浙沪交界极端降水及物理量特征分析[J].热带气象学,2023,39(4):567-580.Hu X R.Analysis of extreme precipitation in the adjoining area of Zhejiang and Shanghai and physical quantity characteristics of typhoon Hagupit[J].Journal of Tropical Meteorology,2023,39(4):567-580.
[38] 向纯怡,赵海坤,刘青元,等.1909号台风“利奇马”登陆后强降水分布特征[J].气象科学,2020,40(3):294-302.Xiang C Y,Zhao H K,Liu Q Y,et al.The distribution of torrential rain after landfalling of typhoon “Lekima”(1909)[J].Journal of the Meteorological Sciences,2020,40(3):294-302.
[39] Willoughby H E,Marks Jr F D,Feinberg R J.Stationary and moving convective bands in hurricanes[J].Journal of the Atmospheric Sciences,1984,41(22):3189-3211.
[40] Gall R,Tuttle J,Hildebrand P.Small-scale spiral bands observed in Hurricanes Andrew,Hugo,and Erin[J].Monthly Weather Review,1998,126(7):1749-1766.
[41] Cecil D J,Zipser E J,Nesbitt S W.Reflectivity,ice scattering,and lightning characteristics of hurricane eyewalls and rainbands.Part Ⅰ:Quantitative Description[J].Monthly Weather Review,2002,130(4):769-784.
[42] Ryan B F,Barnes G M,Zipser E J.A wide rainband in a developing tropical cyclone[J].Monthly Weather Review,1992,120(3):431-447.
[43] Samsury C E,Zipser E J.Secondary wind maxima in hurricanes:Airflow and relationship to rainbands[J].Monthly Weather Review,1995,123(12):3502-3517.
[44] 张康波,冯明轩,雷德义.台风“利奇马”防御工作回顾[J].中国防汛抗旱,2019,29(11):1-3.Zhang K B,Feng M X,Lei D Y.Review of defense work of typhoon "Lekima"[J].China Flood & Drought Management,2019,29(11):1-3.
[45] 任芝花,张志富,孙超,等.全国自动气象站实时观测资料三级质量控制系统研制[J].气象,2015,41(10):1268-1277.Ren Z H,Zhang Z F,Sun C,et al.Development of three-step quality control system of real-time observation data from AWS in China[J].Meteorology Monthly,2015,41(10):1268-1277.
[46] 孙超,霍庆,任芝花,等.地面气象资料统计处理系统设计与实现[J].应用气象学报,2018,29(5):630-640.Sun C,Huo Q,Ren Z H,et al.Design and implementation of surface meteorological data statistical processing system[J].Journal of Applied Meteorological Science,2018,29(5):630-640.
[47] Jonathan D H,Xue M,Ran L K,et al.High-resolution modeling of typhoon Morakot (2009):Vortex Rossby waves and their role in extreme precipitation over Taiwan[J].Journal of the Atmospheric Sciences,2013,70(1):163-186.
[48] Li Y,Zhao D J.Climatology of tropical cyclone extreme rainfall over China from 1960 to 2019[J].Advances in Atmospheric Sciences,2022,39(2):320-332.
[49] 王晓,余晖,鲍旭炜,等.菲特 (1323) 台风降水的极端性分析[J].气象科学,2017,37(4) :514-521.Wang X,Yu H,Bao X W,et al.Analysis on extreme characteristics of the precipitation brought by typhoon “Fitow” (1323)[J].Journal of the Meteorological Sciences,2017,37(4):514-521.
[50] 孙虎林,黄焕卿,于庆龙,等.2012-2017年珠江口海区短时强对流天气灾害的统计分析[J].海洋预报.2019,36(4):35-43.Sun H L,Huang H Q,Yu Q L,et al.Statistical analysis of short-term severe convective weather disasters in the Pearl River Estuary during 2012—2017[J].Marine Forecasts,2019,36(4):35-43.
基本信息:
DOI:10.16441/j.cnki.hdxb.20240055
中图分类号:P426.6;P444
引用信息:
[1]彭成祥,端义宏,冯佳宁.2019年超强台风“利奇马”外雨带降水精细结构分析[J].中国海洋大学学报(自然科学版),2025,55(03):1-12.DOI:10.16441/j.cnki.hdxb.20240055.
基金信息:
国家自然科学基金项目(42192554,61827901); 中国气象科学研究院科技发展基金项目(2022KJ012);中国气象科学研究院基本科研业务费项目(2022Y006); 上海台风研究基金项目(TFJJ202210)资助~~