黄海微微型浮游植物对灰霾颗粒添加以及光照变化的响应Response of Picophytoplankton to the Addition of Haze Particles and Change in Light Intensity in the Yellow Sea
潘志伟,张潮,高会旺
摘要(Abstract):
本研究于2020年夏、秋两季,在黄海的三个站位开展了船基受控培养实验,研究了灰霾颗粒添加和光照变化(相较于海面约40%、68%和82%的光衰减)对微微型浮游植物生长、群落演替及碳生物量和叶绿素a(Chl a)比值的影响。结果表明,微微型浮游植物均表现出对总Chl a相当甚至主导的贡献能力,且所有培养站位初始海水中微微型浮游植物优势类群均为微微型真核浮游植物和聚球藻。在黄海中部和北部的贫营养海域,灰霾颗粒添加提供的氮能够促进微微型浮游植物的Chl a(Chl a_(pico))浓度、微微型真核浮游植物和聚球藻细胞丰度的增加,但光照变化的影响不显著。然而,微微型浮游植物碳生物量(C_(pico))和Chl a_(pico)比值(C_(pico)/Chl a_(pico))随着灰霾颗粒的添加和光照强度的衰减呈降低趋势,这与浮游植物的光合色素合成水平密切相关。在近岸富营养海域,培养实验期间海面的光照强度较低,且由于海域水体浑浊,光照强度是影响微微型浮游植物生长和C_(pico)/Chl a_(pico)比值的主要因素。Chl a_(pico)、细胞丰度和C_(pico)/Chl a_(pico)比值均随着光照强度的衰减逐渐降低。本研究初步揭示了大气沉降和光照双因子调控下微微型浮游植物Chl a_(pico)和碳生物量的变化特征。
关键词(KeyWords): 微微型浮游植物;光照;灰霾颗粒;黄海;叶绿素a
基金项目(Foundation): 国家自然科学基金项目(41876125,U1906215)资助~~
作者(Author): 潘志伟,张潮,高会旺
DOI: 10.16441/j.cnki.hdxb.20220233
参考文献(References):
- [1] Jickells T,Moore C M.The importance of atmospheric deposition for ocean productivity[J].Annual Review of Ecology,Evolution,and Systematics,2015,46(1):481-501.
- [2] 牟英春,褚强,张潮,等.南海浮游植物对沙尘和灰霾添加的响应[J].中国环境科学,2018,38(9):3612-3623.Mu Y C,Chu Q,Zhang C,et al.Responses of phytoplankton to dust and haze particle additions in the South China Sea[J].Chinese Environmental Science,2018,38(9):3612-3623.
- [3] Zhang C,Ito A,Shi Z,et al.Fertilization of the northwest Pacific Ocean by east Asia air pollutants[J].Global Biogeochemical Cycles,2019,33(6):690-702.
- [4] Lacour L,Ardyna M,Stec K F,et al.Unexpected winter phytoplankton blooms in the North Atlantic subpolar gyre[J].Nature Geoscience,2017,10(11):836-839.
- [5] Mahadevan A.The impact of submesoscale physics on primary productivity of plankton[J].Annual Review of Marine Science,2016(8):161-184.
- [6] 林绍迎.中国近海高浊度水体中光传输特征的数值模拟研究[D].青岛:中国海洋大学,2007.Lin S Y.Numerical Study of the Light Propagation Characteristics in the High Turbid Chinese Sea[D].Qingdao:Ocean University of China,2007.
- [7] Huang Bangqin,Hong Huasheng,Wang Haili.Size-fractionated primary productivity and the phytoplankton-bacteria relationship in the Taiwan Strait[J].Marine Ecology Progress Series,1999,183:29-38.
- [8] Guo C,Yu J,Ho T Y,et al.Dynamics of phytoplankton community structure in the South China Sea in response to the East Asian aerosol input[J].Biogeosciences,2012,9(4):1619-1636.
- [9] Duan X,Guo C,Zhang C,et al.Effect of East Asian atmospheric particulate matter deposition on bacterial activity and community structure in the oligotrophic Northwest Pacific[J].Environ Pollut,2021,283(2):117088.
- [10] Meng X,Chen Y,Wang B,et al.Responses of phytoplankton community to the input of different aerosols in the East China Sea[J].Geophysical Research Letters,2016,43(13):7081-7088.
- [11] 邱进坤,张树刚,姚炜民,等.QuAAtrO连续流动分析仪测定海水中营养盐[J].环境科学与技术,2011(S2):187-189.Qiu J K,Zhang S G,Yao W M,et al.Determination of nutrients in seawater by QuAAtrO continuous flow analyzer[J].Environmental Science and Technology,2011(S2):187-189.
- [12] Zhang C,Gao H,Yao X,et al.Phytoplankton growth response to Asian dust addition in the northwest Pacific Ocean versus the Yellow Sea[J].Biogeosciences,2018,16(3):749-766.
- [13] 焦念志,杨燕辉.中国海原绿球藻研究[J].科学通报,2002(7):485-491.Jiao N Z,Yang Y H.Prochlorococcus studies in the China Sea[J].Chinese Science Bulletin,2002(7):485-491.
- [14] Chai C,Yu Z,Song X,et al.The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea,China[J].Hydrobiologia,2006,563(1):313-328.
- [15] Fu M Z,Sun P,Wang Z,et al.Structure,characteristics and possible formation mechanisms of the subsurface chlorophyll maximum in the Yellow Sea cold water mass[J].Continental Shelf Research,2018,165:93-105.
- [16] Bian C,Jiang W,Quan Q,et al.Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011[J].Journal of Marine Systems,2013,121-122:24-35.
- [17] Maraón.Phytoplankton size structure[M]//Encyclopedia of Ocean Sciences (Second ed).UK:Oxford,2009:445-452.
- [18] Finkel Z V,Irwin A J,Schofield O.Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton[J].Marine Ecology Progress,2004,273(1):269-79.
- [19] Cermeňo P,Maraňón E,Pérez V,et al.Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ría de Vigo,NW-Spain):Seasonal and short-time scale variability[J].Estuarine,Coastal and Shelf Science,2006,67(1):261-266.
- [20] Zhang C,Chu Q,Yingchun M,et al.Weakened fertilization impact of anthropogenic aerosols on marine phytoplankton—A comparative analysis of dust and haze particles[J].Ecotoxicology and Environmental Safety,2022,230:113162.
- [21] 贺敬怡,张潮,牟英春,等.沙尘和灰霾对西北太平洋浮游植物群落结构变化的影响[J].中国海洋大学学报(自然科学版),2019,49(7):71-84.He J Y,Zhang C,Mu Y C,et al.The effect of dust and haze particle on phytoplankton community structure in the Northwest Pacific[J].Periodical of Ocean University of China,2019,49(7):71-84.
- [22] Townsend D W,Spinrad R W.Early spring phytoplankton blooms in the Gulf of Maine[J].Continental Shelf Research,1986,6(4):515-529.
- [23] Kevin R.Arrigo erratum:Marine microorganisms and global nutrient cycles[J].Nature,2005,438(7064):122-129.
- [24] Li H,Chen Y,Zhou S,et al.Change of dominant phytoplankton groups in the eutrophic coastal sea due to atmospheric deposition[J].Science of the Total Environment,2021,753:9-14.
- [25] 王晓敏.遮光对光合作用的影响分析[J].现代农业科技,2013(3):74-79.Wang X M.Effects of shading on photosynthesis[J].Modern Agricultural Science and Technology,2013(3):74-79.
- [26] Lin L,Wang Y,Liu D.Vertical average irradiance shapes the spatial pattern of winter chlorophyll-a in the Yellow Sea:Light vs.Chl a[J].Estuarine,Coastal and Shelf Science,2019,224:31-39.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||