亚洲沙尘中铁、铜对黄海近海表层优势浮游细菌丰度影响的模拟研究Effects of Iron and Copper in Asian Dust on Dominant Bacterioplankton Abundance in the Surface of the Yellow Sea
丁雅楠,那红,祁建华
摘要(Abstract):
本文于2021年夏季在黄海近岸采集表层海水进行室内培养实验。通过添加不同浓度铁、铜以及沙尘来研究沙尘中铁、铜对海洋表层优势浮游细菌丰度的影响。结果表明,在近海富营养区,铁的添加在培养前期可短暂促进优势细菌丰度的增加(为对照组的1.33~6.58倍),其中低浓度铁的促进作用最显著(P<0.05),主要是通过影响优势细菌对溶解无机氮(Dissolved Inorganic Nitrogen, DIN)、溶解态有机物(Dissolved Organic Matter, DOM)和Fe的吸收利用以及对Cu的释放,进而促进细菌生长。铜的添加能在培养后期抑制优势细菌的丰度,其细菌丰度与对照组相比下降2%~53%,高浓度铜对细菌的抑制作用强于低浓度铜,主要通过影响细菌对溶解态有机氮(Dissolved Organic Nitrogen, DON)和Cu的吸收利用以及对NO~-_2+NO~-_3、溶解态有机碳(Dissolved Organic Carbon, DOC)和Fe的释放速率,进而影响其生长。沙尘添加对黄海表层近海优势浮游细菌的生长总体上先抑制(比对照组低1%~19%)后促进(比对照组高15%~60%),低浓度沙尘在培养后期对细菌丰度的促进作用显著(P<0.05),沙尘主要通过影响细菌对DIN和DON的吸收释放来影响细菌生长。研究显示,亚洲沙尘沉降对近海富营养区域浮游细菌生长有影响,尤其在培养后期,但这种影响效应不仅仅是铁的促进作用与铜的抑制作用的结果,而是沙尘中营养盐、DOC以及微量金属共同影响的作用。研究结果可为深入探讨沙尘沉降对海洋浮游细菌的影响及其作用机制提供科学参考。
关键词(KeyWords): 沙尘;铁;铜;优势浮游细菌;黄海近岸
基金项目(Foundation): 国家自然科学基金项目(41775148,U1906215)资助~~
作者(Author): 丁雅楠,那红,祁建华
DOI: 10.16441/j.cnki.hdxb.20220141
参考文献(References):
- [1] Ducklow H W,Steinberg D K,Buesseler K O.Ocean carbon export and the biological pump[J].Oceanography,2001,14:50-58.
- [2] Falkowski P G,Fenchel T,Delong E F.The microbial engines that drive Earth′s biogeochemical cycles[J].Science,2008,320(5879):1034-1039.
- [3] Zehr J P,Kudela R M.Nitrogen cycle of the open ocean:From genes to ecosystems[J].Annual Review of Marine Science,2010,3(1):197-225.
- [4] Zubkov M V,Fuchs B M,Burkill P H,et al.Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea[J].Applied and Environmental Microbiology,2001,67(11):5210-5218.
- [5] Lekunberri E I,Lefort T,Romero E,et al.Effects of a dust deposition event on coastal marine microbial abundance and activity,bacterial community structure and ecosystem function[J].Journal of Plankton Research,2010,32(4):381-396.
- [6] Chen X,Zhang X,Zhao Y,et al.Response of Heterotrophic Bacteria Abundance and Community Structure to Asian Dust Addition in the Oligotrophic Northwest Pacific Ocean[J].Journal of Ocean University of China,2020,19(3):722-728.
- [7] Bopaiah B,Stephen O,Ronald B.Plankton respiration and carbon flux through bacterioplankton on the Louisiana shelf[J].Limnology & Oceanography,1994,39(6):1259-1275.
- [8] J?rgensen N,Kroer N,Coffin R B,et al.Relations between bacterial nitrogen metabolism and growth efficiency in an estuarine and an open-water ecosystem aquatic microbial ecology[J].Aquatic Microbial Ecology,1999,18(3):247-261.
- [9] Biswas H,Bandyopadhyay D.Physiological responses of coastal phytoplankton (Visakhapatnam,Sw Bay of Bengal,India) to experimental copper addition.marine environmental research[J].Marine Environmental Research,2017,131:19-31.
- [10] Moffett J W,Brand L E.Production of strong,extracellular Cu chelators by marine cyanobacteria in response to Cu stress[J].Limnology and Oceanography,1996,41(3):388-395.
- [11] Mann E L,Ahlgren N,Moffett J W,et al.Copper toxicity and cyanobacteria ecology in the Sargasso Sea[J].Limnology and Oceanography,2002,47(4):976-988.
- [12] Sunda W G.Feedback interactions between trace metal nutrients and phytoplankton in the Ocean[J].Frontiers in Microbiology,2012,3:1-22.
- [13] Matilde B,Juan B A,Julio L G.Copper and photosystem II:A controversial relationship[J].Physiologia Plantarum,1995,94(1):174-180.
- [14] 李佳慧,张潮,刘莹,等.沙尘和灰霾沉降对黄海春季浮游植物生长的影响[J].环境科学学报,2017,37(1):112-120.Li J H,Zhang C,Liu Y,et al.Impacts of dust and haze particles deposition on phytoplankton growth in Yellow Sea during springtime[J].Journal of Environmental Sciences,2017,37(1):112-120.
- [15] Westrich J R,Ebling A M,Landing W M,et al.Saharan dust nutrients promote Vibrio bloom formation in marine surface waters[J].Proceedings of the National Academy of Sciences,2016,113(21):5964-5969.
- [16] Zhang R,Kelly R L,Kauffman K M,et al.Growth of marine Vibrio in oligotrophic environments is not stimulated by the addition of inorganic iron[J].Earth and Planetary Science Letters,2019,516:148-155.
- [17] Agawin N S R,Hale M S,Rivkin R B,et al.Microbial response to a mesoscale enrichment in the Subarctic Pacific:Bacterial community composition[J].Deep Sea Research Part II Topical Studies in Oceanography,2006,53(20-22):2248-2267.
- [18] Jain A,Meena R M,Naik R K,et al.Response of polar front phytoplankton and bacterial community to micronutrient amendments[J].Deep-Sea Research Part Ⅱ,2015,118:197-208.
- [19] Gast G J,Jonkers P J,Duyl F C V,et al.Bacteria,flagellates and nutrients in island fringing coral reef waters:Influence of the ocean,the reef and eutrophication[J].Bulletin of Marine Science,1999,65(2):523-538.
- [20] Hoch M P,Dillon K S,Coffin R B,et al.Sensitivity of bacterioplankton nitrogen metabolism to eutrophication in sub-tropical coastal waters of Key West,Florida[J].Marine Pollution Bulletin,2008,56(5):913-926.
- [21] Zhang K,Gao H W.The characteristics of Asian-dust storms during 2000—2002:From the source to the sea[J].Atmospheric Environment,2007,41(39):9136-9145.
- [22] Hou R,Chen X,Li K,et al.Microcosm experiments reveal Asian dust deposition stimulates growth and reduces diversity in bacterioplankton of the China Seas[J].écoscience,2019,27(1):1-10.
- [23] Guo C,Jing H,Kong L,et al.Effect of East Asian aerosol enrichment on microbial community composition in the South China Sea[J].Journal of Plankton Research,2013,35(3):485-503.
- [24] Ferrier-Pagès C,Karner M,Rassoulzadegan F.Release of dissolved amino acids by flagellates and ciliates grazing on bacteria[J].Oceanologica Acta,1998,21(3):485-494.
- [25] 白洁,李岿然,张昊飞,等.胶州湾异养浮游细菌对磷的吸收作用及影响因素研究[J].中国海洋大学学报(自然科学版),2005(5):835-838.Bai J,Li K R,Zhang H F,et al.Phosphorus uptake by heterotrophic bacterioplankton and its affecting factors in Jiaozhou Bay[J].Periodical of Ocean University of China,2005(5):835-838.
- [26] 甄晓桐,李力,王小静,等.黄、渤海几种溶解态痕量金属(Cu、Ni、Co、Zn)分布特征及其影响因素[J].海洋与湖沼,2019,50(5):1022-1032.Zhen X T,Li L,Wang X J,et al.Distribution characteristics and influencing factors of several dissolved trace metals (Cu,Ni,Co,Zn) in the Yellow Sea and the Bohai Sea[J].Oceanologia Et Limnologia Sinica,2019,50(5):1022-1032.
- [27] 吴志昊,尤锋,王丽娟,等.黄渤海近岸表层海水及地下水中Fe分布特征分析[J].海洋环境科学,2014,33(5):699-704.Wu Z H,You F,Wang L J,et al.Distribution analysis of waterborne Fe in the surface water of Yellow Sea,Bohai Sea and groundwater[J].Marine Environmental Science,2014,33(5):699-704.
- [28] 程娟,马启敏,王爱红,等.黄海海域表层海水表观铜络合容量[J].中国海洋大学学报(自然科学版),2006(S1):143-146.Cheng J,Ma Q M,Wang A H,et al.Apparent copper complexation capacity of surface seawater in the Yellow Sea[J].Periodical of Ocean University of China,2006(S1):143-146.
- [29] 张海波,刘珂,苏荣国,等.2018年南黄海浒苔绿潮迁移发展规律与营养盐相互关系探究[J].海洋学报,2020,42(8):30-39.Zhang H B,Liu K,Su R G,et al.Study on the coupling relationship between the development of Ulva prolifera green tide and nutrients in the southern Yellow Sea in 2018[J].Haiyang Xuebao,2020,42(8):30-39.
- [30] 王林项,李修竹,唐新宇,等.浒苔绿潮暴发对南黄海海域溶解有机物的影响[J].中国环境科学,2020,40(2):806-815.Wang L X,Li X Z,Tang X Y,et al.Effects of the occurrence of green tide (Ulva prolifera blooms) on dissolved organic matters in the Southern Yellow Sea[J].China Environmental Science,2020,40(2):806-815.
- [31] 张婷,王作华,石晓勇,等.黄海、东海溶解有机碳的分布特征[J].海洋环境科学,2011,30(2):162-166.Zhang T,Wang Z H,Shi X Y,et al.Spatial distribution of dissolved organic carbon in the Yellow Sea and East China Sea[J].Marine Environmental Science,2011,30(2):162-166.
- [32] Allers E,Gómez-Consarnau L,Pinhassi J,et al.Response of alteromonadaceae and rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms[J].Environmental Microbio-logy,2007,9(10):2417-2429.
- [33] Obernosterer I,Fourquez M,Blain S.Fe and C co-limitation of heterotrophic bacteria in the naturally fertilized region off the Kerguelen Islands[J].Biogeosciences,2015,12(6):1983-1992.
- [34] Baltar F,Gutiérrez-Rodríguez A,Meyer M,et al.Specific effect of trace metals on marine heterotrophic microbial activity and diversity:Key role of iron and zinc and hydrocarbon-degrading bacteria[J].Frontiers in Microbiology,2018,9(3190):1-16.
- [35] Rahav E,Raveh O,Hazan O,et al.Impact of nutrient enrichment on productivity of coastal water along the SE Mediterranean shore of Israel-A bioassay approach[J].Marine Pollution Bulletin,2018,127(FEBa):559-567.
- [36] Fujii M,Dang T C,Bligh M W,et al.Cellular characteristics and growth behavior of iron-limited Microcystis aeruginosa in nutrient-depleted and nutrient-replete chemostat systems[J].Limno-logy and Oceanography,2016,61(6):2151-2164.
- [37] Agawin N,Agusti D S.Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production (Errata)[J].Limnology and Oceanography,2000,45(3):591-600.
- [38] Paerl H W.Coastal eutrophication and harmful algal blooms:Importance of atmospheric deposition and ground water as new nitrogen and other nutrient sources[J].Limnology and Oceanography,1997,42(5):1154-1165.
- [39] Martin J H,Coale K H,Johnson K S,et al.Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J].Nature,1994,371:123-129.
- [40] Rensing C,Mcdevitt S F.The Copper metallome in prokaryotic cells[J].Met Ions Life,2013,12:417-450.
- [41] Posacka A M,Semeniuk D M,Maldonado M T.Effects of copper availability on the physiology of marine heterotrophic bacteria[J].Frontiers in Marine Science,2019,5:1-19.
- [42] Xu F F,Imlay J A.Silver(Ⅰ),mercury(Ⅱ),cadmium(Ⅱ),and zinc(Ⅱ) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli[J].Applied and Environmental Microbiology,2012,78(10):3614-3621.
- [43] Fourquez M,Devez A,Schaumann A,et al.Effects of iron limitation on growth and carbon metabolism in oceanic and coastal heterotrophic bacteria[J].Limnology & Oceanography,2015,59(2):349-360.
- [44] Wei L P,Donat J R,Fones G,et al.Interactions between Cd,and Cu,and Zn influence particulate phytochelatin concentrations in marine phytoplankton:Laboratory results and preliminary field data[J].Environmental Science & Technology,2003,37(16):3609-3618.
- [45] Zhao Y G,Feng G,Bai J,et al.Effect of copper exposure on bacterial community structure and function in the sediments of Jiaozhou Bay,China[J].World Journal Microbiology & Biotechnology,2014,30(7):2033-2043.
- [46] Wiethaus J,Wildner G F,Masepohl B.The multicopper oxidase CutO confers copper tolerance to Rhodobacter capsulatus[J].FEMS Microbiology Letters,2006,256(1):67-74.
- [47] Anastasia T,Tsagaraki T M,Antonia G,et al.Bacterial growth and mortality after deposition of saharan dust and mixed aerosols in the Eastern Mediterranean Sea:A mesocosm experiment[J].Frontiers in Marine Science,2017,3:1-13.
- [48] Zhang R,Kelly R L,Kauffman K M,et al.Growth of marine Vibrio in oligotrophic environments is not stimulated by the addition of inorganic iron[J].Earth and Planetary Science Letters,2019,516:148-155.
- [49] Arandia-Gorostidi N,Alonso-Saez L,Stryhanyuk H,et al.Warming the phycosphere:Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa[J].Environmental Microbiology,2020,22(4):1381-1396.
- [50] Rahav E,Belkin N,Paytan A,et al.Phytoplankton and bacterial response to desert dust deposition in the coastal waters of the Southeastern Mediterranean Sea:A four-year in situ survey[J].Atmosphere,2018,9(305):2-14.
- [51] Pulido-Villena E,Wagener T,Guieu C.Bacterial response to dust pulses in the western Mediterranean:Implications for carbon cycling in the oligotrophic ocean[J].Global Biogeochemical Cycles,2008,22(1):1-12.
- [52] Pulido-Villena E,Baudoux A C,Obernosterer I,et al.Microbial food web dynamics in response to a Saharan dust event:Results from a mesocosm study in the oligotrophic Mediterranean Sea[J].Biogeosciences,2014,11(22):6355-6356.
- [53] Lekunberri I,Lefort T,Romero E,et al.Effects of a dust deposition event on coastal marine microbial abundance and activity,bacterial community structure and ecosystem function[J].Journal of Plankton Research,2010,32(4):381-396.
- [54] Marín-Beltrán I,Logue J B,Andersson A F,et al.Atmospheric deposition impact on bacterial community composition in the NW Mediterranean[J].Frontiers in Microbiology,2019,10:1-14.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||