人工神经网络在凡纳滨对虾养殖水质预测中的应用研究Applicability of Artificial Neural Network in the Quality Prediction of Litopenaeus vannamei Culturing Water
宋协法,马真,万荣,高磊
摘要(Abstract):
以BP神经网络为基础,建立了凡纳滨对虾养殖水质预测模型。采用3层结构,通过灵敏度分析得到网络的输入变量,在确定了模型的各结构参数后,建立了凡纳滨对虾养殖水质预测模型,并根据整个对虾养殖周期内的水质监测数据对模型进行了训练和仿真。结果显示,水质的实测值与预测值之间的相关系数为0.991 8,预测误差率结果显示,最大误差率为4.37%,最小误差率为0.12%,平均误差率为1.20%,总体预测结果较好。BP神经网络能够以较高精度预测养殖水质状况,为水质恶化的早期预报提供了有效途径。
关键词(KeyWords): 人工神经网络;BP神经网络;水质预测;凡纳滨对虾
基金项目(Foundation): 国家科技支撑计划项目(2011BAD13B04)资助
作者(Author): 宋协法,马真,万荣,高磊
DOI: 10.16441/j.cnki.hdxb.2014.06.004
参考文献(References):
- [1]Jun Q,Wang W N,Wang L J,et al.Oxidative stress,DNA damage and osmolality in the Pacific white shrimp,Litopenaeus vannamei exposed to acute low temperature stress[J].Comp Biochem Phys C,2011,154:6-41.
- [2]Food and Agriculture Organization.Production Yearbook.Fishstat[R].Rome:Food and Agriculture Organization,2011.
- [3]Ferreira N C,Bonetti C,Seiffert W Q.Hydrological and water quality indices as management tools in marine shrimp culture[J].Aquaculture,2011,318:425-433.
- [4]Maier H R,Jain A,Dandy G C,et al.Methods used for the development of neural networks for the prediction of water resource variables in river systems:Current status and future directions[J].Environ Modell Softw,2010,25(8):891-909.
- [5]Melesse A M,Ahmad S,McClain M E,et al.Suspended sediment load prediction of river systems:An artificial neural network approach[J].Agr Water Manage,2011,98(5):855-866.
- [6]Palani S,Liong S Y,Tkalich P.An ANN application for water quality forecasting[J].Mar Pollu Bull,2008,56(9):1586-1597.
- [7]Kuo J T,Hsieh M H,Lung W S,et al.Using artificial neural network for reservoir eutrophication prediction[J].Ecol Model,2007,200(1-2):171-177.
- [8]杨琴,谢淑云.BP神经网络在洞庭湖氨氮浓度预测中的应用[J].水资源与水工程学报,2006,17(1):65-70.
- [9]Zhang Q,Stanley S J.Forecasting raw-water quality parameters for the north Saskatchewan river by neural network modeling[J].Water Res,1997,31(9):2340-2350.
- [10]李雪,刘长发,朱学慧,等.基于BP人工神经网络的海水水质综合评价[J].海洋通报,2010,29(2):225-260.
- [11]Memon N A,Unar M A,Ansari A K,et al.Prediction of parametric value of drinking water of hyderabad city by artificial neural network modeling[J].Wseas Transactions on Environment and Development,2008,8(4):707-716.
- [12]卢金锁,黄廷林.基于神经网络技术的水质预测[J].数学的实践与认识,2007,37(18):43-49.
- [13]Akratos C S,Papaspyros J N E,Tsihrintzis V A.Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands:Use of artificial neural networks and development of a design equation[J].Biores Technol,2009,100:586-596.
- [14]王丽梅,袁野,姚建.基于B-P神经网络的城市大气SO2的从浓度预测[J].安徽农业科学,2011,39(7):4278-4280.
- [15]Zheng W,Shi H H,Song X K,et al.Simulation of phytoplankton biomass in Quanzhou Bay using a back propagation network model and sensitivity analysis for environmental variables[J].Chinese Journal of Oceanology and Limnology,2012,30(5):843-851.
- [16]Esmaeili A,Tarazkar M H.Prediction of shrimp growth using an artificial neural network and regression models[J].Aquacul Inter,2011,19:705-713.
- [17]Carbajal-Hernández J J,Sánchez-Fernández L P,Carrasco-Ochoa J A,et al.Immediate water quality assessment in shrimp culture using fuzzy inference systems[J].Expert Systems with Applications,2012,39:10571-10582.
- [18]国家海洋环境监测中心.GB 17378.1-1998海洋监测规范.第4部分:海水分析[S].北京:中国标准出版社,1998:156-178.
- [19]Rankovic′V,Radulovic′J,Radojevic′I,et al.Neural network modeling of dissolved oxygen in the Grua reservoir,Serbia[J].Ecol Model,2010,221(8):1239-1244.
- [20]Yesilnacar M I,Sahinkaya E,Naz M,et al.Neural network prediction of nitrate in groundwater of Harran Plain,Turkey[J].Environ Geol,2008,56(1):19-25.
- [21]Singh K P,Basant A,Malik A,et al.Artificial neural network modeling of the river water quality-A case study[J].Ecol Model,2009,220(6):888-895.
- [22]May D B,Sivakumar M.Prediction of urban stormwater quality using artificial neural networks[J].Environ Model Softw,2009,24(2):296-302.
- [23]Zhao Y,Nan J,Cui F Y,et al.Water quality forecast through application of BP neural network at Yuqiao reservoir[J].J Zhejiang Univer Sci A,2007,8(9):1482-1487.
- [24]Dogan E,Sengorur B,Koklu R.Modeling biochemical oxygen demand of the Melen River in Turkey using an artificial neural network technique[J].J Environ Manag,2009,90(2):1229-1235.
- [25]Chang T C,Chao R J.Application of back-propagation networks in debris flow prediction[J].Engin Geol,2006,85(3-4):270-280.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||