盐胁迫蓝细菌诱导相容性物质积累调控机制研究进展及展望Research Progresses and Perspectives on Regulatory Mechanisms of Salt Stress-Induced Compatible Solutes Production in Cyanobacteria
韩力挥,张伟,罗泉,梁雅静,吕雪峰
摘要(Abstract):
蓝细菌是一类能进行光合作用的原核微生物,其分布广泛,环境适应力强。在盐胁迫环境下,蓝细菌能迅速合成小分子相容性物质,如甘油葡糖苷、蔗糖、海藻糖等,用以抵抗外界的高盐逆境。由于这些相容物在功能食品、美容保湿、发酵原料供给等方面展现出良好的应用潜力,近年来,利用基因工程技术提高蓝细菌相容性物质的合成能力受到业界的关注,多种相容性物质在蓝细菌中的合成效率已获得大幅提高。然而,人们对蓝细菌中相容性物质积累调控机制的认识还十分有限,这制约着相关技术的进一步发展。本文对当前蓝细菌应对盐胁迫迅速积累相容性物质的调控机制进行了综述,分别从关键基因的表达(包括转录、翻译)和关键酶的酶学活性两个层面,对相关研究进展进行了总结,并对蓝细菌相容物光驱合成技术的发展方向进行了展望。
关键词(KeyWords): 蓝细菌;盐胁迫;相容性物质;调控机制;蔗糖;甘油葡糖苷;海藻糖
基金项目(Foundation): 聚球藻PCC 7942中盐胁迫诱导蔗糖合成调控机制的研究项目(31872622);; 洛伐他汀酯酶PcEST的催化机理及分子改造研究项目(31700051)资助~~
作者(Author): 韩力挥,张伟,罗泉,梁雅静,吕雪峰
DOI: 10.16441/j.cnki.hdxb.20200060
参考文献(References):
- [1] Vincent W F.Cyanobacteria[M].Vincent WF eds.Encyclopedia of Inland Waters,Holland:Elsevier,2009:226-232.
- [2] Singh H.Desiccation and radiation stress tolerance in cyanobacteria[J].Journal of Basic Microbiology,2018,58(10):813-826.
- [3] Ducat D C,Way J C,Silver P A.Engineering cyanobacteria to generate high-value products[J].Trends in Biotechnology,2011,29(2):95-103.
- [4] Hagemann M,Hess W R.Systems and synthetic biology for the biotechnological application of cyanobacteria[J].Curr Opin Biotechnol,2018,49:94-99.
- [5] Kl?hn S,Hagemann M.Compatible solute biosynthesis in cyanobacteria[J].Environmental Microbiology,2011,13(3):551-562.
- [6] Tan X,Du W,Lu X.Photosynthetic and extracellular production of glucosylglycerol by genetically engineered and gel-encapsulated cyanobacteria[J].Appl Microbiol Biotechnol,2015,99(5):2147-2154.
- [7] Du W,Liang F,Duan Y,et al.Exploring the photosynthetic production capacity of sucrose by cyanobacteria[J].Metabolic Engineering,2013,19:17-25.
- [8] Song K,Tan X,Liang Y,et al.The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production[J].Appl Microbiol Biotechnol,2016,100(18):7865-7875.
- [9] Qiao C,Duan Y,Zhang M,et al.Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942[J].Applied and Environmental Microbiology,2018,84(2):e02023-17.
- [10] Lin P-C,Zhang F,Pakrasi H B.Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973[J].Scientific Reports,2020,10(1):1-8.
- [11] Duan Y,Luo Q,Liang F,et al.Sucrose secreted by the engineered cyanobacterium and its fermentability[J].Journal of Ocean University of China,2016,15(5):890-896.
- [12] Ducat D C,Avelar-Rivas J A,Way J C,et al.Rerouting carbon flux to enhance photosynthetic productivity[J].Applied and Environmental Microbiology,2012,78(8):2660-2668.
- [13] Tan X,Du W,Lu X.Photosynthetic and extracellular production of glucosylglycerol by genetically engineered and gel-encapsulated cyanobacteria[J].Applied Microbiology and Biotechnology,2014,99(5):2147-2154.
- [14] Pade N,Hagemann M.Salt acclimation of cyanobacteria and their application in biotechnology[J].Life,2014,5(1):25-49.
- [15] Brown A D,Simpson J R.Water relations of sugar-tolerant Yeasts:the role of intracellular polyols[J].Journal of General Microbiology,1972,72(3):589-591.
- [16] Welsh D T.Ecological significance of compatible solute accumulation by micro-organisms from single cells to global climate[J].Fems Microbiology Reviews,2000,24(3):263-290.
- [17] Arakawa T,Timasheff S N.The stabilization of proteins by osmolytes[J].Biophysical Journal,1985,47(3):411-414.
- [18] Kurz M.Compatible solute influence on nucleic acids:Many questions but few answers[J].Saline Systems,2008,4(6):1-13.
- [19] Kirsch F,Kl?hn S,Hagemann M.Salt-regulated accumulation of the compatible solutes sucrose and glucosylglycerol in cyanobacteria and its biotechnological potential[J].Frontiers in Microbiology,2019,10(2139):1-17.
- [20] Yancey P H.Organic osmolytes as compatible,metabolic and counteracting cytoprotectants in high osmolarity and other stresses[J].The Journal of Experimental Biology,2005,208(15):2819-2830.
- [21] Hagemann M.Molecular biology of cyanobacterial salt acclimation[J].Fems Microbiology Reviews,2011,35(1):87-123.
- [22] Pade N,Michalik D,Ruth W,et al.Trimethylated homoserine functions as the major compatible solute in the globally significant oceanic cyanobacterium Trichodesmium[J].Proceedings of the National Academy of Sciences,2016,113(46):13191-13196.
- [23] Fulda S,Huckauf J,Schoor A,et al.Analysis of stress responses in the cyanobacterial strains Synechococcus sp.PCC 7942,Synechocystis sp.PCC 6803,and Synechococcus sp.PCC 7418:osmolyte accumulation and stress protein synthesis[J].Journal of Plant Physiology,1999,154(2):240-249.
- [24] Hagemann M,Marin K.Salt-induced sucrose accumulation is mediated by sucrose-phosphate-synthase in cyanobacteria[J].Journal of Plant Physiology,1999,155(3):424-430.
- [25] Salerno G L,Porchia A C,Vargas W A,et al.Fructose-containing oligosaccharides:novel compatible solutes in Anabaena cells exposed to salt stress[J].Plant Science,2004,167(5):1003-1008.
- [26] Higo A.The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp.PCC 7120[J].Microbiology,2006,152(4):979-987.
- [27] Wu S.Molecular cloning of maltooligosyltrehalose trehalohydrolase gene from Nostoc flagelliforme and trehalose-related response to stresses[J].Journal of Microbiology and Biotechnology,2011,21(8):830-837.
- [28] Yoshida T,Sakamoto T.Water-stress induced trehalose accumulation and control of trehalase in the cyanobacterium Nostoc punctiforme IAM M-15[J].Journal of General and Applied Microbiology,2009,55(2):135-145.
- [29] Pade N,Compaoré J,Kl?hn S,et al.The marine cyanobacterium Crocosphaera watsonii WH8501 synthesizes the compatible solute trehalose by a laterally acquired OtsAB fusion protein[J].Environmental Microbiology,2012,14(5):1261-1271.
- [30] Hershkovitz N,Oren A,Cohen Y.Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress[J].Appl Environ Microbiol,1991,57(3):645-648.
- [31] Page-Sharp M,Behm C A,Smith G D.Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils[J].Biochimica et Biophysica Acta,1999,1472(3):519-528.
- [32] Kl?hn S,Steglich C,Hess W R,et al.Glucosylglycerate:a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments[J].Environmental Microbiology,2010,12(1):83-94.
- [33] Reed R H,Warr S R C,Richardson D L,et al.Multiphasic osmotic adjustment in a euryhaline cyanobacterium[J].Fems Microbiology Letters,1985,28(3):225-229.
- [34] Ohmori K,Ehira S,Kimura S,et al.Changes in the amount of cellular trehalose,the activity of maltooligosyl trehalose hydrolase,and the expression of its gene in response to salt stress in the cyanobacterium Spirulina platensis[J].Microbes and Environments,2009,24(1):52-56.
- [35] Mohammad F A A,Reed R H,Stewart W D P.The halophilic cyanobacterium Synechocystis DUN52 and its osmotic responses[J].Fems Microbiology Letters,1983,16(2-3):287-290.
- [36] Goh F,Barrow K D,Burns B P,et al.Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria[J].Archives of Microbiology,2010,192(12):1031-1038.
- [37] Gabbay-Azaria R,Tel-Or E,Schonfeld M.Glycinebetaine as an osmoregulant and compatible solute in the marine cyanobacterium Spirulina subsalsa[J].Archives of Biochemistry and Biophysics,1988,264(1):333-339.
- [38] Tan X,Luo Q,Lu X.Biosynthesis,biotechnological production,and applications of glucosylglycerols[J].Applied Microbiology and Biotechnology,2016,100(14):6131-6139.
- [39] Marin K,Zuther E,Kerstan T,et al.The ggpS gene from Synechocystis sp.strain PCC 6803 encoding glucosyl-glycerol-phosphate synthase is involved in osmolyte synthesis[J].Journal of Bacteriology,1998,180(18):4843-4849.
- [40] Hagemann M,Schoor A,Jeanjean R,et al.The stpA gene form Synechocystis sp.strain PCC 6803 encodes the glucosylglycerol-phosphate phosphatase involved in cyanobacterial osmotic response to salt shock[J].Journal of Bacteriology,1997,179(5):1727-1733.
- [41] Savakis P,Tan X,Qiao C,et al.Slr1670 from Synechocystis sp.PCC 6803 is required for the re-assimilation of the osmolyte glucosylglycerol[J].Front Microbiol,2016,7(1350):1-10.
- [42] Kirsch F,Pade N,Kl?hn S,et al.The glucosylglycerol-degrading enzyme GghA is involved in acclimation to fluctuating salinities by the cyanobacterium Synechocystis sp.strain PCC 6803[J].Microbiology,2017,163(9):1319-1328.
- [43] Marin K,Huckauf J,Fulda S,et al.Salt-dependent expression of glucosylglycerol-phosphate synthase,involved in osmolyte synthesis in the syanobacterium Synechocystis sp.Strain PCC 6803[J].Journal of Bacteriology,2002,184(11):2870-2877.
- [44] Engelbrecht F,Marin K,Hagemann M.Expression of the ggpS gene,involved in osmolyte synthesis in the marine cyanobacterium Synechococcus sp.Strain PCC 7002,revealed regulatory differences between this strain and the freshwater strain Synechocystis sp.strain PCC 6803[J].Applied and Environmental Microbiology,1999,65(11):4822-4829.
- [45] Kizawa A,Kawahara A,Takimura Y,et al.RNA-seq profiling reveals novel target genes of LexA in the cyanobacterium Synechocystis sp.PCC 6803[J].Frontiers in Microbiology,2016,7(193):1-14.
- [46] Kl?hn S,H?hne A,Simmon E,et al.The gene ssl3076 encodes a protein mediating the salt-induced expression of ggpS for the biosynthesis of the compatible solute glucosylglycerol in Synechocystis sp.strain PCC 6803[J].Journal of Bacteriology,2010,192(17):4403-4412.
- [47] Butala M,Zgur-Bertok D,Busby S J.The bacterial LexA transcriptional repressor[J].Cellular and Molecular Life Sciences:CMLS,2009,66(1):82-93.
- [48] Novak J F,Stirnberg M,Roenneke B,et al.A novel mechanism of osmosensing,a salt-dependent protein-nucleic acid interaction in the cyanobacterium Synechocystis species PCC 6803[J].Journal of Biological Chemistry,2011,286(5):3235-3241.
- [49] Billis K,Billini M,Tripp H J,et al.Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of stress acclimation[J].PLoS ONE,2014,9(10):e109738.
- [50] Lunn J E.Evolution of sucrose synthesis[J].Plant Physiology,2002,128(4):1490-1500.
- [51] Vargas W A,Salerno G L.The cinderella story of sucrose hydrolysis:alkaline/neutral invertases,from cyanobacteria to unforeseen roles in plant cytosol and organelles[J].Plant Science,2010,178(1):1-8.
- [52] Curatti L,Flores E,Salerno G.Sucrose is involved in the diazotrophic metabolism of the heterocyst-forming cyanobacterium Anabaena sp.[J].FEBS Letters,2002,513(2-3):175-178.
- [53] Kolman M,Nishi C,Perez-Cenci M,et al.Sucrose in cyanobacteria:from a salt-response molecule to play a key role in nitrogen fixation[J].Life,2015,5(1):102-126.
- [54] Koch K.Sucrose metabolism:regulatory mechanisms and pivotal roles in sugar sensing and plant development[J].Current Opinion in Plant Biology,2004,7(3):235-246.
- [55] Perez-Cenci M,Salerno G L.Functional characterization of Synechococcus amylosucrase and fructokinase encoding genes discovers two novel actors on the stage of cyanobacterial sucrose metabolism[J].Plant Science,2014,224:95-102.
- [56] Schwartz S H,Black T A,J?ger K,et al.Regulation of an osmoticum-responsive gene in Anabaena sp.strain PCC 7120[J].Journal of Bacteriology,1998,180(23):6332-6337.
- [57] Ehira S,Kimura S,Miyazaki S,et al.Sucrose synthesis in the nitrogen-fixing cyanobacterium Anabaena sp.strain PCC 7120 is controlled by the two-component response regulator OrrA[J].Appl Environ Microbiol,2014,80(18):5672-5679.
- [58] Los D A,Zorina A,Sinetova M,et al.Stress sensors and signal transducers in cyanobacteria[J].Sensors,2010,10(3):2386-2415.
- [59] Desplats P,Folco E,Salerno G L.Sucrose may play an additional role to that of an osmolyte in Synechocystis sp.PCC 6803 salt-shocked cells[J].Plant Physiology and Biochemistry,2005,43(2):133-138.
- [60] Song K,Hagemann M,Tan X,et al.The response regulator Slr1588 regulates spsA but is not crucial for salt acclimation of Synechocystis sp.PCC 6803[J].Frontiers in Microbiology,2017,8(1176):1-10.
- [61] Kirsch F,Luo Q,Lu X,et al.Inactivation of invertase enhances sucrose production in the cyanobacterium Synechocystis sp.PCC 6803[J].Microbiology,2018,164(10):1220-1228.
- [62] Liang Y,Zhang M,Wang M,et al.Freshwater cyanobacterium Synechococcus elongatus PCC 7942 adapts to salt stress environment via ion-induced enzymatic balance of compatible solute[J].Appl Environ Microbiol,DOI:10.1128/AEM.02904-19.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||