耦合非线性薛定谔方程的高精度守恒差分格式A Highly Accurate and Conservative Finite Difference Scheme for Coupled Nonlinear Schrdinger Equations
谢树森,尹丽萍
摘要(Abstract):
提出解非线性耦合Schrodinger方程的1种差分格式。理论证明此格式关于时间和空间具有二阶精度,保持了连续方程的2个守恒量,并且是收敛、无条件稳定的。大量的数值试验证明了差分格式的精度以及守恒性。
关键词(KeyWords): CNLSE;高精度差分格式;稳定性;守恒格式
基金项目(Foundation):
作者(Author): 谢树森,尹丽萍
DOI: 10.16441/j.cnki.hdxb.2009.03.033
参考文献(References):
- [1]Ismail M S,Thiab R Taha.A linearly implicit conservative schemefor the coupled Nonlinear Schrodinger equation[J].Mathematics andComputers in Simulation,2007,74(4-5):302-311.
- [2]Ismail M S,Thiab R Taha.Numerical simulation of coupled nonlinearSchrodinger equation[J].Mathematics and Computers in Simulation,2001,56(6):547-562.
- [3]Ismail M S,Alamri S Z.Highly Accurate Finite Difference Methodfor Coupled Nonlinear Schr dinger equation[J].International Jour-nal of Computer Mathematics,2004,81(3):333-351.
- [4]Ismail M S.Numerical Solution of Coupled Nonlinear Schr dinger E-quation by Galerkin Method[J].Mathematics and Computers in Sim-ulation,2008,78(4):532-547.
- [5]Yan Xu,Chi-Wang Shu.Local discontinuous Galerkin methods fornonlinear Schr dinger equations[J].Journal of ComputationalPhysics,2005,205(1):72-97.
- [6]张鲁明.非线性Schrodinger方程的高精度守恒差分格式[J].应用数学学报,2005,28(1):178-186.
- [7]Wadati M,Izuka T,Hisakado M.A Coupled Nonlinear Schr dingerequation and optical solitons[J].Journal of the Physical Society ofJapan,1992,61(7):2241-2245.
- [8]Yang J.Multisoliton perturbation theory for the Manakov equationsand its applications to nonlinear optics[J].Physical Review E,1999,59(2):2393-2405.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||