不同节点布置下二维涡激振动的无单元法参数化分析Two-Dimensional Vortex-Induced Vibration Parameters Analysis Useing Element Free Method with Different Nodes Arrangement
杨林,李华军
摘要(Abstract):
尝试建立1种基于无单元法的涡激振动数值模拟算法,并给出适用于涡激振动分析的前处理自动布点方法。基于无单元法理论,使用动最小二乘法构造形函数,利用无单元伽辽金法,采用速度和压力分离模式,及手工布点和自动布点2种方法所得出的节点布置形式,对流场控制方程进行空间离散,模拟二维涡激振动的流场形态,并对VIV相关参数进行分析,计算不同节点布置情况下的升力系数(Cl)、曳力系数(Cd)及斯特罗哈数(St),并与物理模型实验结果进行对比。计算结果表明,无单元伽辽金法应用于立管VIV分析是可行的,且文中采用2种布点方法均能较好的模拟流场中泻涡脱落的形态,计算结果与传统方法和物理模型实验结果吻合良好。证明文中2种布点方法都能用于固定圆柱的二维VIV分析,但自动布点法能够更好地适用于复杂问题的计算及圆柱体在流场中的VIV动力响应分析。
关键词(KeyWords): 深水立管;涡激振动;无单元法;节点布置
基金项目(Foundation): 国家自然科学基金重点项目(50739004)资助
作者(Author): 杨林,李华军
DOI: 10.16441/j.cnki.hdxb.2012.05.016
参考文献(References):
- [1]Yang H Z,Li H J.Instability assessment of deep-sea risers underparametric excitation[J].China Ocean Engineering,2009,23(4):603-612.
- [2]Khalak A,Williamson C H K.Dynamics of a hydro elastic cylin-der with very low mass and damping[J].Journal of Fluids andStructures,1996,10:455-472.
- [3]Khalak A,Williamson C H K.Motions forces and mode transi-tions in vortex induced vibrations at low mass-damping[J].Jour-nal of Fluids and Structures,1999,13:813-851.
- [4]Govardhan R,Williamson C H K.Modes of vortex formation andfrequency response for a freely vibrating cylinder[J].Journal ofFluid Mechanics,2000,420:85-130.
- [5]Govardhan R,Williamson C H K.Resonance forever:existence ofa critical mass and an infinite regime of synchronization in vortexinduced vibration[J].Journal of Fluid Mechanics,2002,473:147-166.
- [6]Techet AH.Seperated flows and vortex induced vibrations[M].Massachusetts:USA MIT,2002.
- [7]Kim W J,Perkins N C.Two dimensional vortex induced vibrationof cable suspensions[J].Journal of Fluids and Structures,2002,16:229-245.
- [8]Facchinetti M L,Langre E,Biolley F.Coupling of structure andwake oscillators in vortex-induced vibrations[J].Journal of Fluidsand Structures,2004,19:123-140.
- [9]Rengel J E,Sphaier S H.A projection method for unsteady Navi-er-Stokes equation with finite volume method and collocated grid[J].Hybrid Methods Engineering,1999,1(4):31-56.
- [10]Lucor D,Imas L,Karniadakis G E.Vortex dislocation and forcedistribution of long flexible cylinders subject to sheared flows[J].Journal of Fluids and Structures,2001,15:641-650.
- [11]AL-Jamal H,Dalton C.Vortex induced vibrations using large ed-dy simulation at a moderate Reynolds number[J].Journal ofFluids and Structures,2004,18:73-92.
- [12]Zhang Z,Liew K M,Cheng Y M.Coupling of the improved ele-ment-freeGalerkin and boundary element methods for 2Delastic-ity problems[J].Eng Anal Bound Elem,2008,32:100-107.
- [13]Zhanga Z,Zhao P,Liew K M.Improved element-free Galerkinmethod for two-dimensional potential problems[J].EngineeringAnalysis with Boundary Elements,2009,33:547-554.
- [14]Ferziger J H,Peric M.Computational methods for fluid dynam-ics[M].Germany:Springer,2002.
- [15]Herfjord K.A study of two-dimensional separated flow by a com-bination of the finite element method and Navier-Stokes equations[D].Trondheim,Norway:The Norwegian Institute of Technol-ogy,1995.
- [16]Norberg C.Fluctuating lift on a circular cylinder:review and newmeasurements[J].Journal of Fluids and Structures.2003,17:57-96.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||