坛紫菜响应失水胁迫的代谢组学分析Metabolomic Analysis of Pyropia haitanensis Under Dehydration Stress
陈睿,杜国英,管晓伟,陈念慈,曹敏,茅云翔,王冬梅
摘要(Abstract):
为探究坛紫菜响应失水胁迫的机制,以坛紫菜(Pyropia haitanensis)为研究对象,采用超高效液相色谱-串联四级杆质谱(UPLC-MS/MS)技术分析了坛紫菜叶状体在失水/复水胁迫下的代谢组学变化。在坛紫菜提取物中检测和鉴定到了大量代谢物(已知的有206种)。利用Analyst 1.6.1软件对原始质谱数据进行采集,通过偏最小二乘判别分析法(PLS-DA)分析主成分,寻找差异代谢物。本研究发现坛紫菜失水组与正常对照组的代谢组间共有58种差异代谢物,失水条件下有38种上调,20种下调,主要包括一些氨基酸类及氨基酸衍生物、苯丙素类、甘油磷脂、核苷酸及其衍生物、黄酮类及类黄酮类、还有植物激素;富集到3条代谢通路,分别是氨酰-tRNA生物合成、嘌呤代谢以及半胱氨酸和蛋氨酸代谢通路。具有抗氧化能力的黄酮类物质、渗透保护因子脯氨酸和甜菜碱在叶状体失水时含量均升高,这表明它们在坛紫菜响应失水逆境中起重要的作用。坛紫菜失水组与复水组组间也存在较大代谢物差异,共筛选出50种差异代谢物,复水后有30种上调,20种下调,主要包括儿茶素及其衍生物、甘油磷脂、黄酮类、脂肪酸、萜类、氨基酸衍生物、苯丙素类以及植物激素类;富集到5条代谢通路,包括:半胱氨酸/蛋氨酸代谢、甘氨酸/丝氨酸/苏氨酸的代谢、D-丙氨酸代谢、氨酰-tRNA生物合成和ABC转运通路。坛紫菜复水组与对照组的组间有42种差异代谢物。与对照组相比,复水组有31种代谢物上调和11种下调,主要包括氨基酸类及氨基酸衍生物、儿茶素衍生物、黄酮类、苯丙素类、萜类和脂肪酸等,仅富集到半胱氨酸和蛋氨酸代谢这一条代谢通路。多种代谢物的变化说明坛紫菜中有多种响应胁迫的策略来使其适应生存环境。
关键词(KeyWords): 坛紫菜;代谢组;失水胁迫;复水;差异代谢物;代谢通路
基金项目(Foundation): 山东省自然科学基金项目(ZR2019MC012)资助~~
作者(Author): 陈睿,杜国英,管晓伟,陈念慈,曹敏,茅云翔,王冬梅
DOI: 10.16441/j.cnki.hdxb.20210173
参考文献(References):
- [1] Jin C,Wang J,Wang S,et al.Porphyra Species:A mini-review of its pharmacological and nutritional properties[J].Journal of Medicinal Food,2016,19(2):111-119.
- [2] 张学成.海藻遗传学[M].北京:中国农业出版社,2005.Zhang X C.Algal Genetics[M].Beijing:Agricultaral Press,2005.
- [3] Blouin N A,Brodie J A,Grossman A C,et al.Porphyra:A marine crop shaped by stress[J].Trends in Plant Science,2011,16(1):29-37.
- [4] Cock J M,Coelho S M.Algal models in plant biology[J].Journal of Experimental Botany,2011,62(8):24-25.
- [5] López-Cristoffanini C,Zapata J,Gaillard F,et al.Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta,Bangiales)[J].Proteomics,2016,(15):23-24.
- [6] Dettmer K,Aronov P A,Hammock B D.Mass spectrometry-based metabolomics[J].Mass Spectrometry Reviews,2010,26(1):51-78.
- [7] Sanchez D H,Redestig H,Kr Mer U,et al.Metabolome-ionome-biomass interactions:What can we learn about salt stress by multiparallel phenotyping?[J].Plant Signaling & Behavior,2008,3(8):598-600.
- [8] Atsushi F,Miyako K.A network perspective on nitrogen metabolism from model to crop plants using integrated ‘omics’ approaches[J].Journal of Experimental Botany,2014(19):5619-5630.
- [9] Shulaev V,Cortes D,Miller G,et al.Metabolomics for plant stress response[J].Physiologia Plantarum,2010,132(2):199-208.
- [10] Roessner U.Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level[J].Molecular Plant,2012,5(2):418-429.
- [11] Cramer G R,A Ergül,Grimplet J,et al.Water and salinity stress in grapevines:Early and late changes in transcript and metabolite profiles[J].Functional & Integrative Genomics,2007,7(2):111-134.
- [12] Foito A,Byrne S L,Shepherd T,et al.Transcriptional and metabolic profiles of Lolium perenne L.genotypes in response to a PEG-induced water stress[J].Plant Biotechnology Journal,2010,7(8):719-732.
- [13] Levi A,Paterson A H,Ca Kmak I,et al.Metabolite and mineral analyses of cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits[J].Physiologia Plantarum,2011,141(3):265-275.
- [14] Mane S P,Robinet C V,Ulanov A,et al.Molecular and physiological adaptation to prolonged drought stress in the leaves of two Andean potato genotypes[J].Functional Plant Biology,2008,35(8):669-688.
- [15] Cecilia V R,Shrinivasrao P M,Alexander V U,et al.Physiological and molecular adaptations to drought in Andean potato genotypes[J].Journal of Experimental Botany,2008,59(8):2109-2123.
- [16] Rizhsky L.When defense pathways collide.the response of arabidopsis to a combination of drought and heat stress[J].Plant Physiology,2004,134(4):1683-1696.
- [17] Sanchez D H,Schwabe F,Erban A,et al.Comparative metabolomics of drought acclimation in model and forage legumes[J].Plant,Cell & Environment,2011,35(1):136-149.
- [18] Silvente S,Sobolev A P,Lara M.Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress[J].PLoS One,2012,7(6):e38554.
- [19] Semel Y,Schauer N,Roessner U,et al.Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype[J].Metabolomics,2007,3(3):289-295.
- [20] 王莉.坛紫菜响应失水胁迫的转录组和表达谱特征分析[D].青岛:中国海洋大学,2013.Wang L.Analycis of Transcriptome and Expression Profiles in Response to Clesiccation Stress on Pyropia haitanensis[D].Qingdao:Ocean University of China,2013.
- [21] Sun P P,Tang X H,Bi G Q,et al.Gene expression profiles of Pyropia yezoensis in response to dehydration and rehydration stresses[J].Marine Genomics,2018(43):43-49.
- [22] Wang D,You W,Chen N,et al.Comparative quantitative proteomics reveals the desiccation stress responses of the intertidal seaweed Pyropia haitanensis[J].Journal of Phycology,2020,56(6):1664-1675.
- [23] Cao M,Xu K,Yu X,et al.A chromosome-level genome assembly of Pyropia haitanensis (Bangiales,Rhodophyta)[J].Mol Ecol Resour,2020,20(1):216-227.
- [24] Starr R C,Zeikus J A.The culture collection of algae at the University of Texas at Austin[J].Journal of Phycology,2010,29(s4):1-106.
- [25] Minoru K,Susumu G,Shuichi K,et al.The KEGG resource for deciphering the genome[J].Nucleic Acids Res,2004,1(32):277-280.
- [26] Ma D,Sun D,Wang C,et al.Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress[J].Plant Physiol Biochem,2014(80):60-66.
- [27] Nakabayashi R,Yonekura-Sakakibara K,Urano K,et al.Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J].Plant Journal,2014,77(3):367-379.
- [28] Parida A K,Dagaonkar V S,Phalak M S,et al.Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery[J].Acta Physiologiae Plantarum,2008,30(5):619-627.
- [29] Evers D,I Lefèvre,Legay S,et al.Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach[J].Journal of Experimental Botany,2010,61(9):2327-2343.
- [30] Verslues P E,Sharma S.Proline.metabolism and its implications for plant-environment interaction[J].Arabidopsis Book,2010,8(e0140):e0140.
- [31] Voetberg G S,Sharp R E.Growth of the maize primary root at low water potentials:Ⅲ.Role of increased proline deposition in osmotic adjustment[J].Plant Physiology,1991,96(4):1125-1130.
- [32] Ober E S,Sharp R E.Proline accumulation in maize (Zea mays L.) primary roots at low water potentials (Ⅰ.Requirement for increased levels of abscisic acid)[J].Plant Physiology,1994,105(3):981-987.
- [33] Yancey P H.Organic osmolytes as compatible,metabolic and counteracting cytoprotectants in high osmolarity and other stresses[J].Journal of Experimental Biology,2005,208(15):2819-2830.
- [34] Hanson A D,Rathinasabapathi B,Rivoal J,et al.Osmoprotective compounds in the Plumbaginaceae:A natural experiment in metabolic engineering of stress tolerance[J].Proceedings of the National Academy of Sciences of the United States of America,1994,91(1):306-310.
- [35] Anh T,Borrelflood C,Jorge V,et al.Effects of water stress on lipid metabolism in cotton leaves[J].Phytochemistry,1985,24(4):723-727.
- [36] Paula F M D,Thi A,Silva J,et al.Effects of water stress on the molecular species composition of polar lipids from Vigna unguiculata L.leaves[J].Plant Science,1990,66(2):185-193.
- [37] Thi A,Borrel-Flood C,Silva J,et al.Effects of drought on[1-14C]-oleic and[1-14C]-linoleic acid desaturation in cotton leaves[J].Physiologia Plantarum,1987,69(1):147-150.
- [38] Paula F M D,Thi A T P,Zuily-Fodil Y,et al.Effects of water stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of Vigna unguiculata[J].Plant Physiology & Biochemistry,1993,31(5):707-715.
- [39] Ferrari-Iliou Roselyne,D′arcy-Lameta Agnès,Thu Pham Thi Anh,Effect of drought on photodynamic peroxidation of leaf total lipophilic extracts[J].Pergamon,1994,37(5):1237-1243.
- [40] Sahsah Y,Campos P,Gareil M,et al.Enzymatic degradation of polar lipids in Vigna unguiculata leaves and influence of drought stress[J].Physiologia Plantarum,1998,104(4):577-586.
- [41] L?sch R.Plant water relations[M]//Ellenberg H,Esser K,Kubitzki K,et al.Progress in Botany.New York:Springer,1989:27-50.
- [42] Turner N C,Jones M M.Turgor maintenance by osmotic adjustment:A review and evaluation[J].Adaptation of Plants to Water & High Temperature Stress,1980,1:87-103.
- [43] Schroeder J I,Kwak J M,Allen G J.Guard cell abscisic acid signalling and engineering drought hardiness in plants[J].Nature,2001,410(6826):327-330.
- [44] Verslues P E,Zhu J K.Before and beyond ABA:Upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress[J].Biochemical Society Transactions,2005,33(2):375-379.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||