春季长江口及其邻近海域海水和大气中CH3I、CH2Br2和CHBr3的浓度分布与海-气通量Distributions and Sea-to-Air Fluxes of CH3I, CH2Br2 and CHBr3 in the Yangtze River Estuary and Its Adjacent Marine Area in Spring
綦倩倩,何真,杨桂朋,汪浩
摘要(Abstract):
测定了2018年春季长江口及其邻近海域海水和大气中碘甲烷(Iodomethane, CH_3I)、二溴甲烷(Dibromomethane, CH_2Br_2)和溴仿(Tribromomethane, CHBr_3)的浓度,研究其在海水和大气中的浓度分布特征,探讨了环境因素对其源汇和浓度分布的影响。调查海域海水中CH_3I、CH_2Br_2和CHBr_3的浓度分别为(5.76±2.50)、(5.38±3.31)和(4.65±3.50) pmol·L~(-1),总体呈现出近岸高,远岸低的趋势。调查海域CH_3I的浓度分布受浮游植物的影响显著;CH_2Br_2的分布是多种因素共同作用的结果,其中人为输入是影响CH_2Br_2浓度分布的重要因素之一;CHBr_3的浓度分布受人为输入和浮游植物产生释放的共同影响。垂直方向上,海水上下混合比较均匀,受长江冲淡水和沉积物释放的影响,CH_3I、CH_2Br_2和CHBr_3在表层和底层都观测到浓度高值。大气中CH_3I、CH_2Br_2和CHBr_3浓度分别是(1.06±0.77)、(1.72±1.22)和(1.97±2.12) pptv,总体上呈现近岸高于远岸的趋势,人为排放、海-气交换和气团活动共同影响了大气中挥发性卤代烃(Volatile halocarbons, VHCs)的浓度分布,大气中的CH_2Br_2和CHBr_3存在多种来源,不同来源之间CH_2Br_2和CHBr_3排放比率存在较大差异。CH_3I、CH_2Br_2和CHBr_3的海-气通量分别为(50.21±45.47)、(-1.76±77.43)和(-37.65±87.07) nmol·(m~2·d)~(-1),表明调查期间长江口及其邻近海域是CH_3I的源,同时也是CHBr_3和CH_2Br_2的汇。
关键词(KeyWords): 挥发性卤代烃;长江口;分布;来源;海-气通量
基金项目(Foundation): 国家自然科学基金项目(41830534,41506088);; 国家重点研究发展计划项目(2016YFA0601304);; 中央高校基本科研业务费项目(201762030)资助~~
作者(Author): 綦倩倩,何真,杨桂朋,汪浩
DOI: 10.16441/j.cnki.hdxb.20200211
参考文献(References):
- [1] Buchmann B,Stemmler K,Reimann S.Regional emissions of anthropogenic halocarbons derived from continuous measurements of ambient air in Switzerland[J].Chimia International Journal for Chemistry,2003,57(9):522-528.
- [2] Bravo-Linares C M,Mudge S M,Loyola-Sepulveda R H.Occurrence of volatile organic compounds (VOCs) in Liverpool Bay,Irish Sea[J].Marine Pollution Bulletin,2007,54(11):1742-1753.
- [3] Moore R M,Tokarczyk R.Chloro-iodomethane in N.Atlantic waters:A potentially significant source of atmospheric iodine[J].Geophysical Research Letters,1992,19(17):1779-1782.
- [4] Platt U,Honninger G.The role of halogen species in the troposphere[J].Chemosphere,2003,52(2):325-338.
- [5] McGivern W S,Sorkhabi O,Suits A G,et al.Primary and secondary processes in the photodissociation of CHBr3[J].The Journal of Physical Chemistry A,2000,104(45):10085-10091.
- [6] Quack B,Wallace D W R.Air-sea flux of bromoform:Controls,rates,and implications[J].Global Biogeochemical Cycles,2003,17(1):1-27.
- [7] Liu Y,Yvon-Lewis S A,Hu L,et al.CHBr3,CH2Br2,and CHClBr2 in US coastal waters during the Gulf of Mexico and East Coast Carbon cruise[J].Journal of Geophysical Research:Oceans,2011,116(C10):1-10.
- [8] 南淑清,张霖琳,梁晶,等.郑州市环境空气中挥发性卤代烃污染特征与健康风险评价[J].环境污染与防治,2016,38(10):72-78.Shuqing N,Lin-Lin Z,Jing L,et al.Pollutioncharacters and health risk assessment of VHCs in ambient air in Zhengzhou[J].Environmental Pollution & Control,2016,38(10):72-78.
- [9] Niu Z,Zang X,Zhang Y.Using physiologically based pharmacokinetic models to estimate the health risk of mixtures of trihalomethanes from reclaimed water[J].Journal of Hazardous Materials,2015,285:190-198.
- [10] Yuan D,He Z,Yang G P.Spatiotemporal distributions of halocarbons in the marine boundary air and surface seawater of the Changjiang estuary and its adjacent East China Sea[J].Marine Pollution Bulletin,2019,140:227-240.
- [11] Yuan D,Yang G P,He Z.Spatio-temporal distributions of chlorofluorocarbons and methyl iodide in the Changjiang (Yangtze River) estuary and its adjacent marine area[J].Marine Pollution Bulletin,2016,103(1-2):247-259.
- [12] 汪浩,何真,张婧,等.夏季长江口及其邻近海域挥发性卤代烃的分布和海-气通量研究[J].海洋学报,2018,40(10):96-109.Hao W,Zhen H,Jing Z,et al.Distribution characteristics and sea-to-air fluxes of volatile halocarbons in the Changjiang River Estuary and its adjacent marine area in summer[J].Haiyang Xuebao,2018,40(10):96-109.
- [13] 杨桂朋,尹士序,陆小兰,等.吹扫-捕集气相色谱法测定海水中挥发性卤代烃[J].中国海洋大学学报(自然科学版),2007(2):299-304.Gui-Peng Y,Shi-Xu Y,Xiao-Lan L,et al.Determination of volatile halocarbonsin seawater using purge-and-trap gas chromatography[J].Periodical of Ocean University of China,2007(2):299-304.
- [14] Reifenhauser W,Heumann K G.Determinations of methyl iodide in the Antarctic atmosphere and the South Polar Sea[J].General Topics,1992,26(16):2905-2912.
- [15] Parsons T R,Maita Y,Lalli C M.A manual of Chemical and Biological Methods for Seawater Analysis[M].New York:Pergamon Press,1984.
- [16] Liss P S,Slater P G.Flux of gases across the air-sea interface[J].Nature,1974,247(5438):181-184.
- [17] Wanninkh of R.Relationship between wind speed and gas exchange over the ocean revisited[J].Limnology and Oceanography:Methods,2014,12(6):351-362.
- [18] Khalil M A K,Moore R M,Harper D B,et al.Natural emissions of chlorine-containing gases:Reactive chlorine emissions inventory[J].Journal of Geophysical Research:Atmospheres,1999,104(7):8333-8346.
- [19] Moore R M,Geen C E,Tait V K.Determination of Henry's law constantsfor a suite of naturally occurring halogenated methanes in seawater[J].Chemosphere,1995,30(6):1183-1191.
- [20] Wu H,Deng B,Yuan R,et al.Detiding measurement on transport of the Changjiang-derived buoyant coastal current[J].Journal of Physical Oceanography,2013,43(11):2388-2399.
- [21] 吴晓丹,宋金明,李学刚.长江口邻近海域水团特征与影响范围的季节变化[J].海洋科学,2014,38(12):110-119.Xiao-Dan W U,Jin-Ming S,Xue-Gang L.Seasonal variation of water mass characteristic and influence area in the Yangtze Estuary and its adjacent waters[J].Marine Sciences,2014,38(12):110-119.
- [22] 高永强,高磊,朱礼鑫,等.长江口及其邻近海域悬浮颗粒物浓度和粒径的时空变化特征[J].海洋学报,2018,40(3):62-73.Yongqiang G,Lei G,Lixin Z,et al.Spatiotemporal variations in concentration and size of suspended particulate matter in the Changjiang(Yangtze River)Estuary and its adjacent sea[J].Acta Oceanological Sinica,2018,40(3):62-73.
- [23] Guo C,He Q,Guo L,et al.A study of in-situ sediment flocculation in the turbidity maxima of the Yangtze Estuary[J].Estuarine,Coastal and Shelf Science,2017,191:1-9.
- [24] Moore R M,Tokarczyk R.Volatile biogenic halocarbons in the northwest Atlantic[J].Global Biogeochemical Cycles,1993,7(1):195-210.
- [25] Keppler F,Eiden R,Niedan V,et al.Halocarbons produced by natural oxidation processes during degradation of organic matter[J].Nature,2000,403(6767):298-301.
- [26] 彭子源,蒋雪中,候立军,等.1982和2012年枯季长江口最大浑浊带悬浮泥沙和盐度垂向剖面特征对比[J].海洋地质前沿,2020,36(1):7-18.Ziyuan P,Xuezhong J,Lijun H,et al.Comparison of suspended sediment and salinity vertical distribution across the turbidity maximum zone in the yangtze estuary in day seasons of 1982 and 2012[J].Marine Geology Frontiers,2020,36(1):7-18.
- [27] Carpenter L J,Jones C E,Dunk R M,et al.Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean[J].Atmos Chem Phys,2009,9:1805-1816.
- [28] Hughes C,Franklin D J,Malin G.Iodomethane production by two important marine cyanobacteria:Prochlorococcus marinus(CCMP 2389) and Synechococcus sp.(CCMP 2370) [J].Marine Chemistry,2011,125(1-4):19-25.
- [29] Manley S L,de la Cuesta J L.Methyl iodide production from marine phytoplankton cultures[J].Limnology and Oceanography,1997,42(1):142-147.
- [30] Gschwend P M,MacFarlane J K,Newman K A.Volatile halogenated organic compounds released to seawater from temperate marine macroalgae[J].Science,1985,227(4690):1033-1035.
- [31] Richter U,Wallace D W R.Production of methyl iodide in the tropical Atlantic Ocean[J].Geophysical Research Letters,2004,31(23):1-4.
- [32] Hinga K R.Effects of pH on coastal marine phytoplankton[J].Marine Ecology Progress Series,2002,238:281-300.
- [33] Moore R M,Zafiriou O C.Photochemical production of methyl iodide in seawater[J].Journal of Geophysical Research:Atmospheres,1994,99(8):16415-16420.
- [34] Li Y,He Z,Yang G P,et al.Volatile halocarbonsin the marine atmosphere and surface seawater:Diurnal and spatial variations and influences of environmental factors[J].Atmospheric Environment,2019,214:116820.
- [35] World Meteorological Organization (WMO),Scientific Assessment of Ozone Depletion:2014[R].World Meteorological Organization,Global Ozone Research and Monitoring Project—Report No.55,Switzerland:[s.n.],2014.
- [36] Hu Q,Xie Z,Wang X,et al.Methyl iodine over oceans from the Arctic Ocean to the maritime Antarctic[J].Scientific Reports,2016,6(1):1-8.
- [37] Nissinen T K,Miettinen I T,Martikainen P J,et al.Disinfection by-products in Finnish drinking waters[J].Chemosphere,2002,48(1):9-20.
- [38] Goodwin K D,Schaefer J K,Oremland R S.Bacterial oxidation of dibromomethane and methyl bromide in natural waters and enrichment cultures[J].Applied and Environmental Microbiology,1998,64(12):4629-4636.
- [39] Yokouchi Y,Saito T,Zeng J,et al.Seasonal variation of bromocarbons at Hateruma Island,Japan:Implications for global sources[J].Journal of Atmospheric Chemistry,2017,74(2):171-185.
- [40] Bell N,Hsu L,Jacob D J,et al.Methyl iodide:Atmospheric budget and use as a tracer of marine convection in global models[J].Journal of Geophysical Research Atmospheres,2002,107:1-8.
- [41] Lovelock J E.Natural halocarbons in the air and in the sea[J].Nature,1975,256(5514):193-194.
- [42] Chuck A L,Turner S M,Liss P S.Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean[J].Journal of Geophysical Research:Oceans,2005,110(10):1-12.
- [43] Butler J H,King D B,Lobert J M,et al.Oceanic distributions and emissions of short-lived halocarbons[J].Global Biogeochemical Cycles,2007,21(1):1-11.
- [44] Estrada M,Delgado M,Blasco D,et al.Phytoplankton across tropical and subtropical regions of the Atlantic,Indian and Pacific Oceans[J].PLOS ONE,2016,11(3):1-29.
- [45] Song S,Li Z,Li C,et al.The response of spring phytoplankton assemblage to diluted water and upwelling in the eutrophic Changjiang (Yangtze River) Estuary[J].Acta Oceanologica Sinica,2017,36(12):101-110.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||