求解反应扩散方程的紧致隐积分因子方法Compact Implicit Integration Factor Method to Solve the Reaction Diffusion Equation
张荣培
摘要(Abstract):
积分因子(IF)方法是近年来提出的求解刚性常微分方程组的一种有效的数值方法。本文应用改进的紧致隐积分因子(cIIF)方法求解二维反应扩散方程。在空间离散上采用二阶中心差分方法。数值模拟得到各种斑图结构与所引文献结果相当一致。
关键词(KeyWords): 反应扩散方程;紧致隐积分因子方法;有限差分
基金项目(Foundation): 国家自然科学基金青年基金项目(61105130)资助
作者(Author): 张荣培
DOI: 10.16441/j.cnki.hdxb.2012.s1.032
参考文献(References):
- [1]Turing A M.The chemical basis of morphogenesis[J].Phil TransR Soc.1952,237:37-72.
- [2]孙建强,秦孟兆,戴桂冬.解扩散方程的指数时间差分方法[J].数值计算与计算机应用,2008,29:261-266.
- [3]Nie Q,Zhang Y T,Zhao R.Efficient semi-implicit schemes forstiff systems[J].J Comput Phy,2006,214:521-537.
- [4]Nie Q,Wan F,Zhang Y T,et al.Compact integration factormethods in high spatial dimensions[J].J Comput Phy,2008,227:5238-5255.
- [5]Schnakenberg J.Simple chemical reaction systems with limit cyclebehaviour[J].J Theor Biol,1979,81:389-400.
- [6]Zhu J,Zhang Y T,Newman S A,et al.Application of discontinu-ous Galerkin methods for reaction-diffusion systems in develop-mental biology[J].J Sci Comput,2009,40:391-418.
- [7]Gray P,Scott S K.Sustained oscillations and other exotic patternsof behavior in isothermal reactions[J].J Phys Chem,1985,89:22-32.
- [8]Pearson J E.Complex patterns in a simple system[J].Science,1993,261:189-92.
- [9]De Kepper P,Castets V,Dulos E.Turing-type chemical patternsin the chlorite-iodide-malonic acid reaction[J].Physica D,1991,49:161-169.
- [10]Lengyel I,Epstein I R.Modeling of Turing structures in thechlorite-iodidemalonic acid-starch reaction system[J].Science,1991,251:650-652.
- [11]Li Q,Zheng C,Wang N,et al.LBGK simulations of turing pat-terns in CIMA model[J].J Sci Comput,2001,16:121-134.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||