甲嘧磺隆亚急性暴露下盐生杜氏藻的生理生化响应Physiological and Biochemical Responses of Dunaliella salina to Subacute Exposure of Sulfometuron-Methyl
冷雨,刘嘉琪,孟范平
摘要(Abstract):
作为一种磺酰脲类除草剂,甲嘧磺隆(Sulfometuron-methyl, SM)近年来已被国内部分近岸海域用于互花米草消杀。为探讨其对海洋微藻的毒性机理,将敏感物种盐生杜氏藻(Dunaliella salina)在3种亚急性浓度(0.032 5、0.065和0.130 mg/L)的SM中暴露8 d,测定不同时间的藻细胞中乙酰羟酸合酶(AHAS)、支链氨基酸(BCAAs)、光合色素以及活性氧(ROS)、丙二醛(MDA)的活性(或含量)。研究表明,微藻的AHAS对SM具有高敏感性,其活性在低浓度SM下被显著抑制,此时未观察到光合色素和BCAAs合成受阻,表明该酶是SM的直接作用靶标。在中、低浓度SM暴露初期,微藻出现“毒物兴奋效应”,表现为3种BCAAs和3种光合色素的含量显著升高;在高浓度SM暴露初期或中期,3种BCAAs和叶绿素a的合成均受到抑制。此外,高浓度SM暴露期间,ROS和MDA的含量激增,表明藻细胞内出现氧化逆境。由此判断,当SM浓度逐渐增至0.130 mg/L时,微藻开始受到两方面不利影响:(1)AHAS活性降低使BCAAs合成受阻,进而导致蛋白质合成减少和初级代谢降低,使藻细胞对氧化逆境的耐受性变差;(2)藻细胞因代谢SM而产生过多ROS,造成膜脂过氧化发生,使蛋白质、色素等生物大分子受到氧化损伤。虽然AHAS对SM的高敏感性表明第一种影响早于第二种影响发生,但是,它们在高浓度SM下共同作用,将导致细胞受损程度加大甚至死亡。研究结果表明,AHAS活性抑制和ROS过量积累是SM对海洋微藻致毒的主要原因。
关键词(KeyWords): 甲嘧磺隆;盐生杜氏藻;乙酰羟酸合酶;支链氨基酸;氧化逆境
基金项目(Foundation): 国家自然科学基金项目(42077335)资助~~
作者(Author): 冷雨,刘嘉琪,孟范平
DOI: 10.16441/j.cnki.hdxb.20230282
参考文献(References):
- [1] 王兰芳.霞浦县滩涂互花米草的为害与防控技术探讨[J].中国农业信息,2017,9(17):87-89.Wang L F.Discussion on the damage and prevention and control technology of Spartina alterniflora in tidal flats in Xiapu County[J].China Agricultural Informatioan,2017,9(17):87-89.
- [2] Shao S,Wu J,Meng F,et al.Natural attenuation of sulfometuron-methyl in seawater:Kinetics,intermediates,toxicity change and ecological risk assessment[J].Journal of Environmental Management,2022,313:114980.
- [3] Sendra M,Blasco J,Araújo C V M.Is the cell wall of marine phytoplankton a protective barrier or a nanoparticle interaction site?Toxicological responses of Chlorella autotrophica and Dunaliella salina to Ag and CeO2 nanoparticles[J].Ecological Indicators,2018,95(2):1053-1067.
- [4] Landstein D,Chipman D M,Arad S,et al.Acetohydroxy acid synthase activity in Chlorella emersonii under auto-and heterotrophic growth conditions[J].Plant Physiology,1990,94(2):614-620.
- [5] Landstein D,Epelbaum S,Arad S M,et al.Metabolic response of Chlorella emersonii to the herbicide sulfometuron methyl[J].Planta,1995,197(2):219-224.
- [6] 张新萍,胡先文,岳霞丽,等.甲磺隆对水华鱼腥藻作用机理初探[J].农药,2005,44(10):452-454.Zhang X P,Hu X W,Yue X L,et al.Preliminarystudies on the mechanism of metsulfuron inhibition in Anabaena flosaquae[J].Chinese Journal of Pesticides,2005,44(10):452-454.
- [7] Nystr?m B,Blanck H.Effects of the sulfonylurea herbicide metsulfuron methyl on growth and macromolecular synthesis in the green alga Selenastrum capricornutum[J].Aquatic Toxicology,1998,43(1):25-39.
- [8] Duggleby R G,McCourt J A,Guddat L W.Structure and mechanism of inhibition of plant acetohydroxyacid synthase[J].Plant Physiology and Biochemistry,2008,46(3):309-324.
- [9] 郑培忠,沈健英.新型乙酰乳酸合成酶 (ALS)抑制剂作用机理的研究进展[J].杂草科学,2009(3):1-6.Zheng P Z,Shen J Y.Research progress on the mechanism of action of novel acetyllactate synthase (ALS) inhibitors[J].Journal of Weed Science,2009(3):1-6.
- [10] McCourt J A,Duggleby R G.Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids[J].Amino Acids,2006,31(2):173-210.
- [11] Liu J Q,Meng F P,Du S H,et al.Marine ecological risk assessment for the herbicide sulfometuron-methyl based on species sensitivity distribution approach[J].Journal of Oceanology and Limnology,2023,41(4):1493-1503.
- [12] Wang S C,Liu G Z,Liu F F.Physiological and metabolic toxicity of polystyrene microplastics to Dunaliella salina[J].Environmental Pollution,2023,316:120544.
- [13] 汪本凡,唐欣昀,赵良侠,等.四种维生素对杜氏盐藻生长的影响[J].水生生物学报,2008,32(3):400-402.Wang B F,Tang X Y,Zhao L X,et al.Effect offour kinds of vitamins on growth of Dunaliella Salina[J].Acta Hydrobiologica Sinica,2008,32(3):400-402.
- [14] 白林含.盐藻渗透调节与超微结构改变的研究及烯醇酶基因的克隆、分析和转基因烟草的鉴定[D].成都:四川大学,2003.Bai L H.The Study on the Regulation of Osmotic Pressure and the Ultramicro Structure of Dunaliella salina,the Cloning and Analysis of Gene Enolase,and the Identifiction of Transgenic Tobacco[D].Chengdu:Sichuan University,2003.
- [15] Romero-Freire A,Abdou M,Cobelo-García A.Implications of kinetically-hindered metals in ecotoxicological studies:Effect of platinum spike aging on its toxicity to Dunaliella salina[J].Ecotoxicology and Environmental Safety,2021,227:112924.
- [16] Hassanpour M,Tafreshi S A H,Amiri O,et al.Toxic effects of Fe2WO6 nanoparticles towards microalga Dunaliella salina:Sonochemical synthesis nanoparticles and investigate its impact on the growth[J].Chemosphere,2020,258:127348
- [17] Guillard R L L.Culture of Phytoplankton for Feeding Marine Invertebrates[M].New York:Plenum Press,1975.
- [18] Ray T B.Site of action of chlorsulfuron:Inhibition of valine and isoleucine biosynthesis in plants[J].Plant Physiology,1984,75(3):827-831.
- [19] 范志金,钱传范,于维强,等.氯磺隆和苯磺隆对玉米乙酰乳酸合成酶抑制作用的研究[J].中国农业科学,2003,36(2):173-178.Fan J Z,Qian C F,Yu W Q,et al.Study onenzymatic inhibition of Acetohydroxyacid synthase from Maize (Zea mays L.) by Chlorsulfuron and Tribenuron-methyl[J].Scientia Agricultura Sinica,2003,36(2):173-178.
- [20] 高新菊,王恒亮,马毅辉,等.河南省部分地区麦田荠菜对苯磺隆的抗性水平及抗性靶标分子机制[J].植物保护学报,2017,44(3):501-508.Gao X J,Wang H L,Ma Y H,et al.Resistance of Capsella bursapastoris to tribenuron-methyl in winter wheat fields in some areas of Henan Province and its molecular mechanism[J].Journal of Plant Protection,2017,44(3):501-508.
- [21] 沈丽,王超,陈静,等.UHPLC-Quadrupole/Orbitrap MS同步检测十字花科植物中的游离氨基酸[J].分析测试学报,2017,36(9):1093-1098.Shen L,Wang C,Chen J,et al.Detection offree amino acids in Cruciferous Vegetables by UHPLC-Quadrupole/Orbitrap MS[J].Journal of Instrumental Analysis,2017,36(9):1093-1098.
- [22] 中国测试技术研究院生物研究所,中国测试技术研究院,河北省食品检验研究院.植物中游离氨基酸的测定:GB/T 30987—2020[S].北京:中国标准出版社,2020.Institute of Biology,China Academy of Testing Technology,China Institute of Testing Technology,Hebei Food Inspection and Research Institute.Determination of Free Amino Acids in Plants:GB/T 30987—2020[S].Beijing:Standards Press of China,2020.
- [23] 刘瑀,李娜,刘宇馨,等.溢油对小新月菱形藻氨基酸相对含量变化的影响[J].环境化学,2019,38(2):363-369.Liu Y,Li N,Liu Y X,et al.Effects of oil spill on the relative abundances of amino acids in Nitzschia closterium[J].Environmental Chemistry,2019,38(2):363-369.
- [24] Jeffrey S W,Humphrey G F.New spectrophotometric equations for determining chlorophylls a,b,c1 and c2 in higher plants,algae and natural phytoplankton[J].Biochemie und Physiologie der Pflanzen,1975,167(2):191-194.
- [25] Parsons T R,Strickland J D H.Discussion of spectrophotometric determination of marine plant pigments,with revised equation for ascertaining chlorophylls and carotenoids[J].Journal of Marine Research,1963,21:155-163.
- [26] 罗伟.3种固氮蓝藻对新磺酰脲类除草剂的耐药性差异及其机理的研究[D].上海:上海交通大学,2008.Luo W.Study Onresistant Differences of Three Nitroren-Fixatian Cyanobacteria to New Sulfonylurea and Their Mechanisms[D].Shanghai:Shanghai Jiao Tong University,2008.
- [27] 隋标峰.麦田杂草对苯磺隆敏感性差异的生理生化机制研究[D].泰安:山东农业大学,2007.Sui B F.Studies on the Physiological and Biochemical Mechanism of Sensitivity Difference in Wheat Weeds to Tribenuron-Methyl[D].Taian:Shandong Agricultural University,2007.
- [28] Wang Q,Ge L,Zhao N,et al.A Trp-574-Leu mutation in the Acetohydroxyacid synthase (ALS) gene of Lithospermum arvense L.confers broad-spectrum resistance to ALS inhibitors[J].Pesticide Biochemistry and Physiology,2019,158:12-17.
- [29] Hartnett M E,Newcomb J R,Hodson R C.Mutations in Chlamydomonas reinhardtii conferring resistance to the herbicide sulfometuron methyl[J].Plant Physiology,1987,85:898-901.
- [30] Zhou Q,Liu W,Zhang Y,et al.Action mechanisms of Acetohydroxyacid synthase-inhibiting herbicides[J].Pesticide Biochemistry and Physiology,2007,89(2):89-96.
- [31] 王敏霞.嘧磺隆防治紫茎泽兰的效果及其对泽兰实蝇体内解毒酶的影响[D].福州:福建农林大学,2009.Wang M X.Control Result of Sulfometuron-Methyl on Eupatorium adenoprum and Effect on the Activity of Detoxifying Enzyme in Procecidochares utilis[D].Fuzhou:Fujian Agriculture and Forestry University,2009.
- [32] Xiang Q,Wei X,Yang Z,et al.Acclimation to a broad range of nitrate strength on a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and high-quality biomass production[J].Science of the Total Environment,2021,781(10):146687.
- [33] Royuela M,Gonzalez A,Gonzalez E M,et al.Physiological consequences of continuous,sublethal imazethapyr supply to pea plants[J].Journal of Plant Physiology,2000,157(3):345-354.
- [34] Wittenbach V,Abell L M.Inhibition of Valine,Leucine and Isoleucine Biosynthesis[M].New York:Marcel Dekker,1999:385-416.
- [35] Zhang C,Chen X,Chou W C,et al.Phytotoxic effect and molecular mechanism induced by nanodiamonds towards aquatic Chlorella pyrenoidosa by integrating regular and transcriptomic analyses[J].Chemosphere,2021,270(21):129473.
- [36] Zhang Y,Wu H,Sun M,et al.Photosynthetic physiological performance and proteomic profiling of the oleaginous algae Scenedesmus acuminatus reveal the mechanism of lipid accumulation under low and high nitrogen supplies[J].Photosynthesis Research,2018,138(1):73-102.
- [37] Li X,Peng T,Mu L,et al.Phytotoxicity induced by engineered nanomaterials as explored by metabolomics:Perspectives and challenges[J].Ecotoxicology and Environmental Safety,2019,184(30):109602.
- [38] Nemat Alla M M,Hassan N M.Alleviation of chlorimuron-ethyl toxicity to soybean by branched-chain amino acids or naphthalic anhydride[J].Rendiconti Lincei-Scienze Fisiche e Naturali,2019,30(4):759-766.
- [39] Calabrese E J,Baldwin L A,Holland C D,et al.Hormesis:a highly generalizable and reproducible phenomenon with important implications for risk assessment[J].Risk Analysis,1999,19(2):261-281.
- [40] Hagelstein P,Sieve B,Klein M,et al.Leucine synthesis in chloroplasts:leucine/isoleucine aminotransferase and valine aminotransferase are different enzymes in spinach chloroplasts[J].Journal of Plant Physiology,1997,150(1-2):23-30.
- [41] 欧晓明,雷满香,黄明智,等.新除草剂HNPC-C9908 对小球藻生长的影响研究[J].农药学学报,2003,5(3):16-23.Ou X M,Leng M X,Huang M Z,et al.Study on the effect of a new herbicide HNPC-C9908 on the growth of Chlorella[J].Chinese Journal of Pesticide Science,2003,5(3):16-23.
- [42] 王燕,李蒙英,曲军辉,等.苯达松对轮叶黑藻生理特性的影响[J].天津农业科学,2018,24(5):8-12.Wang Y,Li M Y,Qv J H,et al.Effects of bentazon stress on physiological characteristics of Hydrilla verticillatai[J].Tianjin Agricultural Sciences,2018,24(5):8-12.
- [43] Lima S A C,Castro P M L,Morais R.Biodegradation of pnitrophenol by microalgae[J].Journal of Applied Phycology,2003,15(2):137-142.
- [44] Otto B,Beuchel C,Liers C,et al.Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants[J].FEMS Microbiology Letters,2015,362(11):1-8.
- [45] Esperanza M,Cid á,Herrero C,et al.Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii:Screening cytotoxicity and genotoxicity endpoints[J].Aquatic Toxicology,2015,165:210-221.
- [46] Sun K,Kang F,Waigi M G,et al.Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid[J].Environmental Pollution,2017,220:105-111.
- [47] Almeida A C,Gomes T,Langford K,et al.Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii[J].Aquatic Toxicology,2019,210:117-128.
- [48] 李娟,王应军,高鹏.过氧化氢对铜绿微囊藻的损伤效应研究[J].环境科学学报,2015,35(4):1183-1189.Li J,Wang Y J,Gao P.Damaging effects of hydrogen peroxide on Microcystis aeruginosa[J].Acta Scientiae Circumstantiae,2015,35(4):1183-1189.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||