σ-弱本质有界函数和σ-弱可表示算子σ-Weakly Essentially Bounded Functions andσ-Weakly Representable Operators
魏常果,王苍园
摘要(Abstract):
本文引入了σ-弱本质有界算子函数及σ-弱可表示;证明了L(Ω,M)中的元素都能表示成Ω上的σ-弱可列可加算子测度,即存在等距映射将L(Ω,M)等距嵌入Ba(R)中。还刻画了L(Ω,M)上线性算子和线性泛函的性质;最后证明了L(Ω,μ)上算子T为σ-弱可表示算子的充要条件。
关键词(KeyWords): von Neumann代数;σ-弱本质有界;σ-弱可表示
基金项目(Foundation): 山东省自然科学基金项目(ZR2011AM003);; 国家自然科学基金项目(11171315)资助~~
作者(Author): 魏常果,王苍园
DOI: 10.16441/j.cnki.hdxb.20140333
参考文献(References):
- [1]Matsumoto K.Periodic distributions on C*-algsbras[J].J Math Soc Japan,1995,47(4):687-718.
- [2]Matsumoto K.Distributions on C*-algebra associated whih Rnactions[J].Proc London Math,1997,74(3):444-480.
- [3]Wu L S.Positive-definite generalized functions on operator algebras[J].Chinese J Contemp Math,1997,18(1):127-136.
- [4]Wu L S.Non-commutative harmonic analysis on semgroups[J].Chin Ann of Math,1998,19A(5):583-588.
- [5]Wei C G.On measures with values in von Neumann algebras[J].Journal of Xi’an United University(Natural Sciences Edition),2000,3(4):18-23.
- [6]Wei C G.Measures and integrations onσ-weak operator topology[J].Journal of Mathematical Study,2001,34(3):96-101.
- [7]Wei C G.Some properties of partial order in Banach*algebras[J].Journal of East China Normal University(Natural Science),2005,2005(1):23-27.
- [8]Wei C G.Homomorphisms from extensions of torus algebra[J].Acta Mathematica Sinica,Chinese Series,2006,49(4):791-796.
- [9]Wei C G.Classification of extensions of C(T2)II[J].Science China Mathematics,2012,55(1):179-186.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||