基于深度神经网络的CALIOP透明云下海面风速反演Sea Surface Wind Speed Retrieval Under Transparent Clouds Using Deep Neural Networks with CALIOP Data
罗敦艺,吴东,张馨毅,贺岩
摘要(Abstract):
构建了一种适用于CALIOP透明云下数据的深度神经网络模型,用于反演海面风速。通过使用2017年1、4、7、10月的CALIOP夜间数据和准同步的AMSR-2风速数据对模型进行训练,然后将该模型应用于2018年1—9月的夜间云下数据,实现海面风速的反演。与无云数据对比,所得反演结果表明精度接近,标准偏差最大为0.89 m/s,最低相关系数为0.94。在引入ERA5有效波高数据后,反演精度进一步提升,标准偏差最大为0.68 m/s,相关系数达到0.96以上。研究结果表明,透明云下数据同样可用于风速反演,深度神经网络能够有效地从CALIOP数据中提取风速信息,并结合有效波高数据进一步提高反演精度。
关键词(KeyWords): 遥感;星载激光雷达;海面后向散射;海面风速;有效波高;深度学习
基金项目(Foundation): 中国科学院空间激光信息传输与探测技术重点实验室开放基金项目“星载激光海面粗糙度探测及其应用研究”资助~~
作者(Author): 罗敦艺,吴东,张馨毅,贺岩
DOI: 10.16441/j.cnki.hdxb.20230241
参考文献(References):
- [1] Hong B,Xue H,Zhu L,et al.Climatic change of summer wind direction and its impact on hydrodynamic circulation in the Pearl River Estuary[J].Journal of Marine Science and Engineering,2022,10(7):842-847.
- [2] Cox C,Munk W.Measurement of the roughness of the sea surface from photographs of the Sun’s Glitter[J].Journal of the Optical Society of America,1954,44(11):838-850.
- [3] Wu Jin.Mean square slopes of the wind-disturbed water surface,their magnitude,directionality,and composition[J].Radio Science,1990,25(1):37-48
- [4] Hu Y,Stamnes K,Vaughan M,et al.Sea surface wind speed estimation from space-based lidar measurements[J].Atmospheric Chemistry and Physics,2008,8(13):3593-3601.
- [5] 吴东,张小雪,阎逢旗,等.基于星载激光雷达数据的海面风速探测[J].光学学报,2012,32(8):251-257.Wu D,Zhang X X,Yan F Q,et al.Sea surface wind speed detection by using the data of CALIPSO lidar[J].Acta Optica Sinica,2012,32(8):251-257.
- [6] Monaldo F,Dobson E.On using significant wave height and radar cross section to improve radar altimeter measurements of wind speed[J].Journal of Geophysical Research,1989,94:12699-12701.
- [7] Gourrion J,Vandemark D,Bailey S,et al.Satellite Altimeter models for Surface Wind Speed Developed Using Ocean Satellite Crossovers [R].[s.l.]:Ifremer,2000.
- [8] Han S,Zhang H,Zheng Y.A global study of temporal and spatial variation of SWH and wind speed and their correlation[J].Acta Oceanologica Sinica,2014,33(11):48-54.
- [9] Tian J,Hang X,Jian S.The research on ocean surface wind speed retrieval by neural network algorithm for HY2 Altimeter[J].Geosciences Research,2017,2(1).doi:10.22606/GR.2017.21001.
- [10] Li X,Qin T,Wu K.Retrieval of sea surface wind speed from spaceborne SAR over the Arctic marginal ice zone with a neural network[J].Remote Sensing,2020,12(20):3291.
- [11] Liu X,Bai W,Xia J,et al.FA-RDN:A hybrid neural network on GNSS-R sea surface wind speed retrieval[J].Remote Sensing,2021,13(23):4820.
- [12] Murphy A,Hu Y X.Retrieving aerosol optical depth and high spatial resolution ocean surface wind speed from CALIPSO:A neural network approach[J].Frontiers in Remote Sensing,2021,1:614029.
- [13] 张馨毅,吴东,杨振威,等.星载激光雷达数据海面风速反演模型研究[J].光学学报,2022,42(18):183-189.Zhang X Y,Wu D,Yang Z W,et al.Models of sea surface wind speed retrieval by spaceborne lidar data[J].Acta Optica Sinica,2022,42(18):183-189.
- [14] He M,Hu Y,Huang J,et al.Aerosol optical depth under "clear" sky conditions derived from sea surface reflection of lidar signals[J].Optics Express,2016,24(26):A1618-A1634.
- [15] Kodis R.A note on the theory of scattering from an irregular surface[J].IEEE Transactions on Antennas and Propagation,1966,14(1):77-82.
- [16] Menzies R,Tratt D,Hunt W.Lidar in-space technology experiment measurements of sea surface directional reflectance and the link to surface wind speed[J].Applied Optics,1998,37(24):5550-5559.
- [17] Huang X,Zhang B,Perrie W,et al.A novel deep learning method for marine oil spill detection from satellite synthetic aperture radar imagery[J].Marine Pollution Bulletin,2022,179:113666.doi:10.1016/j.marpolbul.2022.113666.
- [18] Lyu G.SAR target detection based on domain adaptive faster R-CNN with small training data size[J].Remote Sensing,2021,13(21):4202.
- [19] Jiang Y,Qiao R,Zhu Y,et al.Data fusion of atmospheric ozone remote sensing Lidar according to deep learning[J].The Journal of Supercomputing,2021,77:6904-6919.doi:10.1007/s11277-020-03537-y.
- [20] 陈标,吴东.基于CALIOP和MODIS的北极地区海雾检测研究[J].大气与环境光学学报,2022,17(2):267-278.Chen B,Wu D.Arctic sea fog detection using CALIOP and MODIS[J].Journal of Atmospheric and Environmental Optics,2022,17(2):267-278.
- [21] He K M,Zhang X Y,Ren S Q,et al.Deep residual learning for image recognition[J].IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
- [22] Ioffe S,Szegedy C.Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[C].Lille,France:Proceedings of the 32nd International Conference on International Conference on Machine Learning,2015:448-456.
- [23] Geoffrey E,Nitish S,Alex K,et al.Improving neural networks by preventing co-adaptation of feature detectors[EB/OL].(2012-07-03)[2023-8-15].https://www.semanticscholar.org/reader/0060745e006c5f14ec326904119dca19c6545e51.
- [24] Jeffrey L,Owen M.Automated analysis of ocean surface directional wave spectra[J].American Meteorological Society,2001,18(2):277-293.
- [25] Jean-Raymond B.Ocean wave model output parameters [EB/OL].(2020-02-27)[2023-8-15].https://confluence.ecmwf.int/download/attachments/59774192/wave_parameters.
- [26] 冯士笮,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社,1999.Feng Shizuo,Li Fengqi,Li Shaojing.Introduction to Marine Science[M].Beijing:Higher Education Press,1999.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||