长短期记忆神经网络在厦门风暴潮预报中的应用Application of Long Short-Term Memory Neural Network in Xiamen Storm Surge Forecast
苗庆生,徐珊珊,杨锦坤,杨杨,刘玉龙,余璇
摘要(Abstract):
利用长短期记忆神经网络(LSTM)模型强大的长短期记忆能力,建立厦门风暴潮增水预报的人工神经网络模型。利用信息流理论确定了影响增水的10种因子,分别利用不同因子组合测试了不同模型的表现,确定了表现最佳的因子组合。基于此因子组合,对比了LSTM模型和常用的BP神经网络模型、SVM模型和线性回归模型,确定了LSTM模型在风暴潮增水上的优势。基于LSTM最佳预测模型预测了1、2、3及6 h风暴潮增水值,并基于三种不同台风路径分析了模型的平均绝对误差、相关系数、有效系数和极值偏差指标。结果显示,LSTM模型在预报风暴潮短期增水有很高精度,可为防灾减灾提供辅助和参考。
关键词(KeyWords): 风暴潮;信息流;长短期记忆神经网络(LSTM);神经网络;预报
基金项目(Foundation): 国家重点研究发展计划项目(2016YFC1401900)资助~~
作者(Author): 苗庆生,徐珊珊,杨锦坤,杨杨,刘玉龙,余璇
DOI: 10.16441/j.cnki.hdxb.20210167
参考文献(References):
- [1] Doodson A T.Tides and storm surges in a long uniform gulf[J].Proc Math Phys Eng Sci,1956,237:325-343.
- [2] Webster P J,Holland G J,Curry J A,et al.Changes in tropical cyclone number,duration,and intensity in a warming environment[J].Science,2005,309:1844-1846.
- [3] Emanuel K A.Increasing destructiveness of tropical cyclones over the past 30 years[J].Nature,2005,436:686-688.
- [4] 朱星桦.基于改进联合概率模型的厦门岛极端水位预测研究[D].南京:东南大学,2018.Zhu Xinghua.Estimating Extreme Water Levels with Joint Probability Optimal Sampling Method in Xiamen Island[D].Nanjing:Southeast University,2018.
- [5] Chao W T,Young C C,Hsu T W,et al.Long-lead-time prediction of storm surge using artificial neural networks and effective typhoon parameters:Revisit and deeper insight[J].Water,2020,12(9):1-24.
- [6] Conner W C,Kraft K H,Harris D L.Empirical methods for forecasting the maximum storm tide due to hurricanes and other tropical storms[J].Monthly Weather Review,1957,85:113-116.
- [7] Welander P.Numerical predictions of storm surges[J].Advances in Geophysics,1961,8:315-379.
- [8] Platzman G W.The dynamical prediction of wind tides on Lake Erie[J].Meteorol Monogr,1963,4:1-44.
- [9] Jelesnianski C P.A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf[J].Monthly Weather Review,1965,93:343-358.
- [10] Holland G J.An analytic model of the wind and pressure profiles in hurricanes[J].Monthly Weather Review,1980,108:1212-1218.
- [11] Weserink J J,Luettich R A,Baptista A M,et al.Tide and storm surge predictions using a finite element model[J].Journal of Hydraulic Engineering,1992,118:1373-1390.
- [12] Shen J,Zhang K,Xiao C,et al.Improved prediction of storm surge inundation with a high-resolution unstructured grid model[J].Journal of Coastal Research,2006,22:1309-1319.
- [13] Kim S Y,Yasuda T,Mase H.Numerical analysis of effects of tidal variations on storm surges and waves[J].Applied Ocean Research,2008,30:311-322.
- [14] Chen W B,Liu W C,Hsu M H.Computational investigation of typhoon-induced storm surges along the coast of Taiwan[J].Natural Hazards,2012,64:1161-1185.
- [15] Wu G,Shi F,Kirby J T,et al.Modeling wave effects on storm surge and coastal inundation[J].Coastal Engineering,2018,140:371-382.
- [16] Dietrich J C,Zijlema M,Westerink J.et al.Modeling hurricane waves and storm surge using integrally coupled scalable computations[J].Coastal Engineering,2011,58:45-65.
- [17] Torres M J,Hashemi M R,Hayward S,et al.Role of hurricane wind models in accurate simulation of storm surge and waves[J].Journal of Waterway Port Coastal and Ocean Engineering,2019,145(1):04018039.
- [18] Dietrich J C,Zijlema M,Westerink J,et al.Modeling hurricane waves and storm surge using integrally coupled scalable computations[J].Coastal Engineering,2011,58:45-65.
- [19] Kohno N,Dube S K,Entel M,et al.Recent progress in storm surge forecasting[J].Tropical Cyclone Research and Review,2018,7:128-139.
- [20] Rumelhart D E,Hinton G E,Williams R J.Learning representations by back-propagating errors[J].Nature,1986,323:533-536.
- [21] Bajo M,Umgiesser G.Storm surge forecast through a combination of dynamic and neural network models[J].Ocean Model,2010,33:1-9.
- [22] Erdil A,Arcaklioglu E.The prediction of meteorological variables using artificial neural network[J].Neural Computing & Applications,2013,22:1677-1683.
- [23] Young C C,Liu W C.Prediction and modelling of rainfall-runoff during typhoon events using a physically-based and artificial neural network hybrid model[J].Hydrologccal Sciences Journal,2015,60:2102-2116.
- [24] Young C C,Liu W C,Chang C E.Genetic algorithm and fuzzy neural networks combined with the hydrologic modeling system for forecasting watershed runoff discharge[J].Neural Computing & Applications,2015,26:1631-1643.
- [25] SK A,SP B,HM C.Artificial neural network-based storm surge forecast model:Practical application to Sakai Minato,Japan[J].Applied Ocean Research,2019,91:101871.
- [26] 卢君峰,李少伟,袁方超.基于BP神经网络的厦门沿海风暴潮预报应用[J].海洋预报,2016,33(4):9-16.Lu J F,Li S W,Yuan F C.Application of storm surge forecasting by BP artificial neural network off coast of Xiamen[J].Marine Forecasts,2016,33(4):9-16.
- [27] 李未,王如云,卢长娜,等.神经网络在珠江口风暴潮预报中的应用[J].热带海洋学报,2006(3):10-13.Li W,Wang R Y,Lu C N,et al.Forecast of storm surge in Zhujiang River estuary by means of artificial neural network[J].Journal of Tropical Oceanography,2006(3):10-13.
- [28] Deng L,Yu D.Deep learning:Methods and applications[J].Foundations and Trends in Signal Processing,2014,7(3/4):197-387.
- [29] Yang Y,Dong J,Sun X,et al.A CFCC-LSTM Model for sea surface temperature prediction[J].IEEE Geoence & Remote Sensing Letters,2017(2):1-5.
- [30] Zhang Q,Wang H,Dong J,et al.Prediction of sea surface temperature using long short-term memory[J].IEEE Geoscience and Remote Sensing Letters,2017,14(10):1745-1749.
- [31] 石绥祥,王蕾,余璇.长短期记忆神经网络在叶绿素a浓度预测中的应用[J].海洋学报,2020,42(2):134-142.Shi Suixiang,Wang lei,Yu Xuan,et al.Application of long term and short term memory neural network in prediction of chlorophyll a concentration[J].Haiyang Xuebao,2020,42(2):134-142.
- [32] Yang C H,Wu C H,Hsieh C M.Long short-term memory recurrent neural network for tidal level forecasting[J].IEEE Access,2020(99):1-13.
- [33] Jan C D,Tseng C M,Wang J S,et al.Empirical relation between the typhoon surge deviation and the corresponding typhoon characteristics:A case study in Taiwan[J].Journal of Marine Science & Technology,2006,11(3):193-200.
- [34] Yen P H,Jan C D,Lee Y P,et al.Application of Kalman filter to short-term tide level prediction[J].Journal of Waterway Port Coastal & Ocean Engineering,1998,122(5):226-231.
- [35] Doodson A T.Oceanic Tides.Advances in Geophysics[M].New York:Academic Press,1958:117-152.
- [36] Pan H,Lv X,Wang Y,et al.Exploration of tidal-fluvial interaction in the Columbia River Estuary using S_TIDE[J].Journal of Geophysical Research:Oceans,2018,123:6598-6619.
- [37] Pawlowicz R,Beardsley B,Lentz S.Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J].Computers & Geosciences,2002,28(8):929-937.
- [38] 许金电,郭小钢,黄奖.2006年夏季福建近海台风风暴潮特征分析[J].台湾海峡,2011,30(4):473-482.Xu J D,Guo X G,Huang J.Analysis of the characteristics of typhoon storm surges in Fujian offshore area during 2006 summer[J].Journal of Oceanography in Taiwan Strait,2011,30(4):473-482.
- [39] 黄森军.浙江近海台风暴潮及冲淤研究[D].杭州:浙江大学,2017.Huang Senjun.Research on Storm Surge and Erosion and Deposition of Typhoon Offshore in Zhejiang[D].Hangzhou:Zhejiang University,2017.
- [40] Liang X S.Information flow and causality as rigorous notions abinitio[J].Physical Review E,2015,94(5):1-49.
- [41] Liang X San,Entropy evolution and uncertainty estimation with dynamical systems[J].Entropy,2014,16:3605-3634.
- [42] 张文舟,胡建宇,商少平,等.福建沿海风暴潮特征的分析[J].海洋通报,2004,23(3):12-19.Zhang W Z,Hu J Y,Shang S P,et al.On the characteristics of storm surges along Fujian Coast[J].Marine Science Bulletin,2004,23(3):12-19.
- [43] 张莉,商少平,谢燕双,等.基于有限元法的福建沿岸天文潮-风暴潮耦合预报模式研究[J].应用海洋学报,2016,35(2):256-265.Zhang L,Shang S P,Xie Y S,et al.A tide-storm surge coupled model based on finite element method for Fujian coast[J].Journal of Applied Oceanography,2016,35(2):256-265.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||