隐秘小环藻藻际细菌分离鉴定及其对藻细胞生长的影响Isolation and Identification of Phycosphere Bacteria of Cyclotella cryptica and Their Influences on Microalgal Cell Growth
刘雨,张裕,李赟,朱葆华,潘克厚
摘要(Abstract):
为了解隐秘小环藻(Cyclotella cryptica)共生细菌对其生长的影响,本文运用稀释梯度涂布法分离纯化藻液中的细菌,检测了藻菌共培养液中的溶解有机碳(Dissolved organic carbon, DOC)、溶解无机碳(Dissolved inorganic carbon, DIC)及胞外聚合物(Extracellular polymeric substances, EPS)含量的变化,比较了分离菌株对微藻生物量和脂质的影响,初步探究了藻菌之间的相互作用模式。研究显示,从隐秘小环藻藻液共分离纯化8株可培养细菌,通过比对菌株的部分16S rDNA序列,完成了其分类学鉴定。其中,菌株C-1和C-7为隐秘小环藻的优势促生菌,分别将藻细胞密度提高了27.1%和23.9%。与菌株C-1共培养的隐秘小环藻,脂质含量高达43.53%,脂质产率为16.69 mg·L~(-1)·d~(-1),比无菌纯培养对照组的脂质产率提高了37.37%。碳交换研究结果显示,共培养7 d后,2个促生菌株构建的共培养体系中DOC含量显著低于无菌纯培养对照组;DIC含量显著高于无菌纯培养对照组。与无菌纯培养对照组相比,藻菌共培养导致培养上清液中EPS的多糖和蛋白含量显著降低,而细胞结合态EPS的多糖含量在前4 d高于对照组,之后显著降低,但细胞结合态EPS的蛋白含量始终高于对照组。本研究构建了隐秘小环藻与细菌的共生体系,探究了藻菌之间的互作效应,可为隐秘小环藻的规模化生产提供参考。
关键词(KeyWords): 隐秘小环藻;溶解有机碳;溶解无机碳;胞外聚合物;生长;脂质含量;藻际细菌
基金项目(Foundation): 国家自然科学基金项目(41976118)资助~~
作者(Author): 刘雨,张裕,李赟,朱葆华,潘克厚
DOI: 10.16441/j.cnki.hdxb.20220468
参考文献(References):
- [1] Sharifah E N,Eguchi M.The Phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum[J].PLoS One,2013,6(10):e26756.
- [2] Kuo R C,Lin S.Ectobiotic and endobiotic bacteria associated with Eutreptiella sp.isolated from Long Island Sound[J].Protist,2013,164(1):60-74.
- [3] Kazamia E,Czesnick H,Nguyen T,et al.Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation[J].Environmental Microbiology,2012,14(6):1466-1476.
- [4] Teplitski M,Rajamani S.Signal and nutrient exchange in the interactions between soil algae and bacteria[J].Springer Berlin Heidelberg,2011,23:413-426.
- [5] Cho D H,Ramanan R,Heo J,et al.Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community[J].Bioresource Technology,2015,175:578-585.
- [6] Grossart H P,Levold F,Allgaier M,et al.Marine diatom species harbor distinct bacterial communities[J].Environmental Microbiology,2005,7:860-873.
- [7] Nestor A G,Weber P K,Laura A S,et al.Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment[J].Multidisciplinary Journal of Microbial Ecology,2017,11(3):641-650.
- [8] Buchan A,LeCleir G R,Gulvik C A,et al.Master recyclers:Features and functions of bacteria associated with phytoplankton blooms[J].Nature Reviews Microbiology,2014,12(10):686-698.
- [9] Kim B H,Ramanan R,Cho D H,et al.Role of Rhizobium,a plant growth promoting bacterium,in enhancing algal biomass through mutualistic interaction[J].Biomass and Bioenergy,2014,69:95-105.
- [10] Durham B P,Sharma S,Luo H W,et al.Cryptic carbon and sulfur cycling between surface ocean plankton[J].Environmental Sciences,2014,112(2):453-457.
- [11] Durham B P,Dearth S P,Sharma S,et al.Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system[J].Environmental Microbiology,2017,19(9):3500-3513.
- [12] De-Bashan L E,Bashan Y,Moreno M,et al.Increased pigment and lipid content,lipid variety,and cell and population size of the microalgae Chlorella spp.when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense[J].Canadian Journal of Microbiology,2002,48(6):514-521.
- [13] Wang R M,Tian Y,Xue S,et al.Construction and characteristics of artificial consortia of Scenedesmus obliquus-bacteria for S.obliquus growth and lipid production[J].Algal Research,2015,12:436-445.
- [14] Amin S A,Hmelo L R,Tol H V,et al.Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria[J].Nature,2015,522(7554):98-101.
- [15] Segev E,Wyche T P,Kim K H,et al.Dynamic metabolic exchange governs a marine algal-bacterial interaction[J].Elife Sciences,2016,5:e17473.
- [16] Viret O,Toti L,Chapela I H,et al.The role of the extracellular sheath in recognition and attachment of conidia of Discula umbrinella (Berk.& Br.) Morelet to the host surface[J].New Phytologist,1994,127(1):123-131.
- [17] Watanabe K,Imase M,Sasaki K,et al.Composition of the sheath produced by the green alga Chlorella sorokiniana[J].Letters in Applied Microbiology,2006,42(5):538-543.
- [18] Brenner K,You L,Arnold F H.Engineering microbial consortia:A new frontier in synthetic biology[J].Trends in Biotechnology,2008,26(9):483-489.
- [19] Kesaano M,Sims R C.Algal biofilm based technology for wastewater treatment[J].Algal Research,2014,5:231-240.
- [20] Subashchandrabose S R,Ramakrishnan B,Megharaj M,et al.Consortia of cyanobacteria/microalgae and bacteria:Biotechnological potential[J].Biotechnology Advances,2011,29:896-907.
- [21] d′Ippolito G,Sardo A,Paris D,et al.Potential of lipid metabolism in marine diatoms for biofuel production[J].Biotechnology for Biofuels,2015,8(1):28.
- [22] Pahl S L,Lewis D M,Chen F,et al.Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae):Effect of some environmental factors[J].Journal of Bioscience and Bioengineering,2010,109(3):235-239.
- [23] Slocombe S P,Zhang Q,Ross M,et al.Unlocking nature′s treasure-chest:Screening for oleaginous algae[J].European Journal of Phycology,2015,5(1):e09844.
- [24] 张裕,刘雨,朱葆华,等.隐秘小环藻无菌化处理研究[J].中国海洋大学学报(自然科学版),2022,52(11):34-42.Zang Y,Liu Y,Zhu B H,et al.Studies on axenic treatment of Cyclotella cryptica[J].Periodical of Ocean University of China,2022,52(11):34-42.
- [25] 程云飞,王路路,李赟,等.盐度对隐秘小环藻生长、沉降及藻壳物理性质的影响[J].中国海洋大学学报(自然科学版),2022,52(9):29-34.Chen Y F,Wang L L,Li Y,et al.Effect of peptides from Antarctic krill on lipid metabolism of Hyperuricemia mice and its underlining mechanism[J].Periodical of Ocean University of China,2022,52(9):29-34.
- [26] Zebua A,Nursyirwani N,Feliatra F.Molecular identification of proteolitic bacteria from mangrove sediment in Dumai marine station[J].Asian Journal of Aquatic Sciences,2020(2):179-188.
- [27] Bligh E G,Dyer W J.A rapid method of total lipid extraction and purification[J].Canadian Journal of Biochemistry and Physiology,1959,37:911-917.
- [28] Niu Y F,Zhang M H,Li D W,et al.Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum[J].Marine Drugs,2013,11:4558-4569.
- [29] Kim B H,Kang Z,Ramanan R,et al.Nutrient removal and biofuel production in high rate algal pond (HRAP) using real municipal wastewater[J].Journal of Microbiology and Biotechnology,2014,24(8):1123-1132.
- [30] Watanabe K,Takihana N,Aoyagi H,et al.Symbiotic association in Chlorella culture[J].Microbiology Ecology,2005,51(2):187-196.
- [31] Zhou Z Z,Li Q,Song K,et al.Exploration of applying growth-promotion bacteria of Chlorella sorokiniana to open cultivation systems[J].Bioprocess and Biosystems Engineering,2021,44(7):1567-1576.
- [32] Stephens E,Ross I L,Mussgnug J H,et al.Future prospects of microalgal biofuel production systems[J].Trends in Plant Science,2010,15(10):554-564.
- [33] Cole J J.Interactions between bacteria and algae in aquatic ecosystems[J].Annual Review of Ecology Systematics,1982,13:291-314.
- [34] Chorazyczewski A M,Huang I S,Abdulla H,et al.The influence of bacteria on the growth,lipid production,and extracellular metabolite accumulation by Phaeodactylum tricornutum (Bacillariophyceae) [J].Journal of Phycology,2021,57(3):931-940.
- [35] Xue L,Shang H,Ma P,et al.Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria[J].Journal of Basic Microbiollogy,2018,58(4):358-367.
- [36] Lili X,Xianglong C,Quanxi W.Enhanced Lipid Production in Chlamydomonas reinhardtii by Co-culturing with Azotobacter chroococcum[J].Frontiers in Plant Science,2018,9:741.
- [37] Leyva L A,Bashan Y,De-Bashan L E.Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgarisis co-immobilised with Azospirillum brasilensein alginate under autotrophic and heterotrophic conditions[J].Annals of Microbiology,2015,65(1):339-349.
- [38] Croft M T,Lawrence A D,Raux-Deery E,et al.Algae acquire vitamin B12 through a symbiotic relationship with bacteria[J].Nature,2005,438:90-93.
- [39] Amin S A,Green D H,Gardes A,et al.Siderophore-mediated iron uptake in two clades of Marinobacter spp.associated with phytoplankton:The role of light[J].Biometals,2012,25:181-192.
- [40] Hende S V D,Vervaeren H,Desmet S,et al.Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment[J].New Biotechnology,2011,29(1):23-31.
- [41] Munoz R,Kollner C,Guieysse B.Biofilm photobioreactors for the treatment of industrial wastewaters[J].Journal of Hazardous Materials,2009,161:29-34.
- [42] 张圣洁,蔡中华,朱伟胜,等.藻际环境中胞外聚合物的研究进展[J].微生物学报,2020,60(8):1521-1533.Zhang S J,Cai Z H,Zhu W S,et al.Advances in extracellular polymeric substances in phycosphere environment[J].Acta Microbiologica Sinica,2020,60(8):1521-1533.
- [43] Bruckner C G,Bahulikar R,Rahalkar M,et al.Bacteria associated with benthic diatoms from Lake Constance:Phylogeny and influences on diatom growth and secretion of extracellular polymeric substances[J].Applied and Environmental Microbiology,2008,74(24):7740-7749.
- [44] Gardes A,Iversen M H,Grossart H P,et al.Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii[J].The ISME Journal,2011,5:436-445.
- [45] Xiong Y H,Liu Y.Importance of extracellular proteins in maintaining structural integrity of aerobic granules[J].Colloids and Surfaces B:Biointerfaces,2013,112:435-440.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||